依赖金豺优化的光伏组件参数估计

IF 1.2 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
T. H. T. Hanh, N. G. o
{"title":"依赖金豺优化的光伏组件参数估计","authors":"T. H. T. Hanh, N. G. o","doi":"10.24425/aee.2023.147422","DOIUrl":null,"url":null,"abstract":": Due to the nonlinear current-voltage (I-V) relationship of the photovoltaic (PV) module,buildingaprecisemathematicalmodelofthePVmoduleisnecessaryforevaluating and optimizing the PV systems. This paper proposes a method of building PV parameter estimation models based on golden jackal optimization (GJO). GJO is a recently developed algorithm inspired by the idea of the hunting behavior of golden jackals. The explored and exploited searching strategies of GJO are built based on searching for prey as well as harassing and grabbing prey of golden jackals. The performance of GJO is considered on the commercial KC200GT module under various levels of irradiance and temperature. Its performance is compared to well-known particle swarm optimization (PSO), recent Henry gas solubility optimization (HGSO) and some previous methods. The obtained results show that GJO can estimate unknown PV parameters with high precision. Furthermore, GJO can also provide better efficiency than PSO and HGSO in terms of statistical results over several runs. Thus, GJO can be a reliable algorithm for the PV parameter estimation problem under different environmental conditions.","PeriodicalId":45464,"journal":{"name":"Archives of Electrical Engineering","volume":"39 11","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameter estimation of photovoltaic module relied on golden jackal optimization\",\"authors\":\"T. H. T. Hanh, N. G. o\",\"doi\":\"10.24425/aee.2023.147422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Due to the nonlinear current-voltage (I-V) relationship of the photovoltaic (PV) module,buildingaprecisemathematicalmodelofthePVmoduleisnecessaryforevaluating and optimizing the PV systems. This paper proposes a method of building PV parameter estimation models based on golden jackal optimization (GJO). GJO is a recently developed algorithm inspired by the idea of the hunting behavior of golden jackals. The explored and exploited searching strategies of GJO are built based on searching for prey as well as harassing and grabbing prey of golden jackals. The performance of GJO is considered on the commercial KC200GT module under various levels of irradiance and temperature. Its performance is compared to well-known particle swarm optimization (PSO), recent Henry gas solubility optimization (HGSO) and some previous methods. The obtained results show that GJO can estimate unknown PV parameters with high precision. Furthermore, GJO can also provide better efficiency than PSO and HGSO in terms of statistical results over several runs. Thus, GJO can be a reliable algorithm for the PV parameter estimation problem under different environmental conditions.\",\"PeriodicalId\":45464,\"journal\":{\"name\":\"Archives of Electrical Engineering\",\"volume\":\"39 11\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24425/aee.2023.147422\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/aee.2023.147422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

由于光伏(PV)组件的非线性电流-电压(I-V)关系,建立PV模块的精确数学模型是对PV系统进行预估和优化的必要条件。本文提出了一种基于金豺优化(golden jackal optimization, GJO)的PV参数估计模型构建方法。GJO是最近开发的一种算法,灵感来自于金豺的狩猎行为。基于金豺对猎物的搜寻、骚扰和捕捉,构建了GJO的探索和利用搜索策略。在商用KC200GT模块上考虑了GJO在不同辐照度和温度水平下的性能。将其性能与粒子群优化(PSO)、亨利气体溶解度优化(HGSO)和一些已有方法进行了比较。实验结果表明,GJO可以对未知PV参数进行高精度估计。此外,就多次运行的统计结果而言,GJO还可以提供比PSO和HGSO更好的效率。因此,对于不同环境条件下的PV参数估计问题,GJO是一种可靠的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parameter estimation of photovoltaic module relied on golden jackal optimization
: Due to the nonlinear current-voltage (I-V) relationship of the photovoltaic (PV) module,buildingaprecisemathematicalmodelofthePVmoduleisnecessaryforevaluating and optimizing the PV systems. This paper proposes a method of building PV parameter estimation models based on golden jackal optimization (GJO). GJO is a recently developed algorithm inspired by the idea of the hunting behavior of golden jackals. The explored and exploited searching strategies of GJO are built based on searching for prey as well as harassing and grabbing prey of golden jackals. The performance of GJO is considered on the commercial KC200GT module under various levels of irradiance and temperature. Its performance is compared to well-known particle swarm optimization (PSO), recent Henry gas solubility optimization (HGSO) and some previous methods. The obtained results show that GJO can estimate unknown PV parameters with high precision. Furthermore, GJO can also provide better efficiency than PSO and HGSO in terms of statistical results over several runs. Thus, GJO can be a reliable algorithm for the PV parameter estimation problem under different environmental conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of Electrical Engineering
Archives of Electrical Engineering ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
2.40
自引率
53.80%
发文量
0
审稿时长
18 weeks
期刊介绍: The journal publishes original papers in the field of electrical engineering which covers, but not limited to, the following scope: - Control - Electrical machines and transformers - Electrical & magnetic fields problems - Electric traction - Electro heat - Fuel cells, micro machines, hybrid vehicles - Nondestructive testing & Nondestructive evaluation - Electrical power engineering - Power electronics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信