{"title":"半主动结构控制可调恒力机构的设计框架","authors":"T. Rehman, Jing Li, Zeeshan Qaiser, Shane Johnson","doi":"10.1115/1.4064248","DOIUrl":null,"url":null,"abstract":"\n Semi-active adjustable constant force mechanisms (ACFMs) are an emerging alternative in applications where energy-efficient control of constant force environments is required. However, there is a lack of design strategies in the literature for semi-active ACFMs. This study addresses this gap by presenting a design strategy for ACFMs that semi-actively tunes the constant force by structural control. A design framework is presented which consists of an optimization of a high slenderness large stroke CFM followed by a parametric study on adjusting constant force through slenderness reduction by repositioning the boundary condition location. The design framework was able to change constant force ranging from 2-4 times with a stroke of 11-26% of the mechanism footprint respectively. A selected design with a larger force magnitude was fabricated and experimentally tested, demonstrating a change in constant force of 2.01 times which is comparable to that of active control designs and improved compactness, i.e., stroke of 11% of the footprint of the mechanism. In conclusion, the proposed ACFM design framework maximizes the initial CFM stroke and achieves constant force tuning by changing beam slenderness, resulting in compact and efficient ACFM designs.","PeriodicalId":50137,"journal":{"name":"Journal of Mechanical Design","volume":"4 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A design framework for semi-active structural controlled adjustable constant force mechanisms\",\"authors\":\"T. Rehman, Jing Li, Zeeshan Qaiser, Shane Johnson\",\"doi\":\"10.1115/1.4064248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Semi-active adjustable constant force mechanisms (ACFMs) are an emerging alternative in applications where energy-efficient control of constant force environments is required. However, there is a lack of design strategies in the literature for semi-active ACFMs. This study addresses this gap by presenting a design strategy for ACFMs that semi-actively tunes the constant force by structural control. A design framework is presented which consists of an optimization of a high slenderness large stroke CFM followed by a parametric study on adjusting constant force through slenderness reduction by repositioning the boundary condition location. The design framework was able to change constant force ranging from 2-4 times with a stroke of 11-26% of the mechanism footprint respectively. A selected design with a larger force magnitude was fabricated and experimentally tested, demonstrating a change in constant force of 2.01 times which is comparable to that of active control designs and improved compactness, i.e., stroke of 11% of the footprint of the mechanism. In conclusion, the proposed ACFM design framework maximizes the initial CFM stroke and achieves constant force tuning by changing beam slenderness, resulting in compact and efficient ACFM designs.\",\"PeriodicalId\":50137,\"journal\":{\"name\":\"Journal of Mechanical Design\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanical Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4064248\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Design","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4064248","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
A design framework for semi-active structural controlled adjustable constant force mechanisms
Semi-active adjustable constant force mechanisms (ACFMs) are an emerging alternative in applications where energy-efficient control of constant force environments is required. However, there is a lack of design strategies in the literature for semi-active ACFMs. This study addresses this gap by presenting a design strategy for ACFMs that semi-actively tunes the constant force by structural control. A design framework is presented which consists of an optimization of a high slenderness large stroke CFM followed by a parametric study on adjusting constant force through slenderness reduction by repositioning the boundary condition location. The design framework was able to change constant force ranging from 2-4 times with a stroke of 11-26% of the mechanism footprint respectively. A selected design with a larger force magnitude was fabricated and experimentally tested, demonstrating a change in constant force of 2.01 times which is comparable to that of active control designs and improved compactness, i.e., stroke of 11% of the footprint of the mechanism. In conclusion, the proposed ACFM design framework maximizes the initial CFM stroke and achieves constant force tuning by changing beam slenderness, resulting in compact and efficient ACFM designs.
期刊介绍:
The Journal of Mechanical Design (JMD) serves the broad design community as the venue for scholarly, archival research in all aspects of the design activity with emphasis on design synthesis. JMD has traditionally served the ASME Design Engineering Division and its technical committees, but it welcomes contributions from all areas of design with emphasis on synthesis. JMD communicates original contributions, primarily in the form of research articles of considerable depth, but also technical briefs, design innovation papers, book reviews, and editorials.
Scope: The Journal of Mechanical Design (JMD) serves the broad design community as the venue for scholarly, archival research in all aspects of the design activity with emphasis on design synthesis. JMD has traditionally served the ASME Design Engineering Division and its technical committees, but it welcomes contributions from all areas of design with emphasis on synthesis. JMD communicates original contributions, primarily in the form of research articles of considerable depth, but also technical briefs, design innovation papers, book reviews, and editorials.