考虑不同加载速率下冻结土-岩石混合物电阻率和破坏特征的强度破坏模型研究

IF 3 3区 工程技术 Q2 ENGINEERING, GEOLOGICAL
Shuangjiao Wang, Zhiqing Li, Zhiao Gao, Zhiyu Qi, Kai Sun, Ruilin Hu, Yingxin Zhou
{"title":"考虑不同加载速率下冻结土-岩石混合物电阻率和破坏特征的强度破坏模型研究","authors":"Shuangjiao Wang, Zhiqing Li, Zhiao Gao, Zhiyu Qi, Kai Sun, Ruilin Hu, Yingxin Zhou","doi":"10.1139/cgj-2023-0283","DOIUrl":null,"url":null,"abstract":"The strength damage and deformation failure of frozen soil-rock mixture (FSRM) often restrict the safety of major engineering construction in cold areas or the spatial development of urban underground water-rich rock and soil masses. In order to investigate the uniaxial strength damage evolution and failure characteristics of FSRM under different loading rates (0.3, 0.6, 3, 6, 30, 60 mm·min-1) in the quasi-static range, resistivity monitoring and image recognition technology were used to study the time-stress-volumetric strain-resistivity changes. The results indicate that the peak stress, peak strain, initial yield modulus, and tangential modulus of FSRM increase rapidly before increasing slowly as the loading rate increases, and there are critical loading rates and post-peak failure phenomenon. Three distinct types of failure modes, bulge failure, oblique shear failure, and fragmentation failure, were observed at low (0.3-0.6 mm·min-1), medium (3-6 mm·min-1) and high loading rates (30-60 mm·min-1), respectively. The macroscopic failure of the FSRM at different loading rates arises from a combination of strain rate hardening of strength and damage softening of the structure. To predict the stress-strain characteristics at various loading rates, a damage prediction model with a damage variable correction factor considering residual strength was employed, based on the modified Duncan-Chang model and damage theory of electrical resistivity, and the predicted results were in good agreement with the experimental data.","PeriodicalId":9382,"journal":{"name":"Canadian Geotechnical Journal","volume":"28 18","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on Strength Damage Model Considering Resistivity and Failure Characteristics of the Frozen Soil-Rock Mixture Under Different Loading Rates\",\"authors\":\"Shuangjiao Wang, Zhiqing Li, Zhiao Gao, Zhiyu Qi, Kai Sun, Ruilin Hu, Yingxin Zhou\",\"doi\":\"10.1139/cgj-2023-0283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The strength damage and deformation failure of frozen soil-rock mixture (FSRM) often restrict the safety of major engineering construction in cold areas or the spatial development of urban underground water-rich rock and soil masses. In order to investigate the uniaxial strength damage evolution and failure characteristics of FSRM under different loading rates (0.3, 0.6, 3, 6, 30, 60 mm·min-1) in the quasi-static range, resistivity monitoring and image recognition technology were used to study the time-stress-volumetric strain-resistivity changes. The results indicate that the peak stress, peak strain, initial yield modulus, and tangential modulus of FSRM increase rapidly before increasing slowly as the loading rate increases, and there are critical loading rates and post-peak failure phenomenon. Three distinct types of failure modes, bulge failure, oblique shear failure, and fragmentation failure, were observed at low (0.3-0.6 mm·min-1), medium (3-6 mm·min-1) and high loading rates (30-60 mm·min-1), respectively. The macroscopic failure of the FSRM at different loading rates arises from a combination of strain rate hardening of strength and damage softening of the structure. To predict the stress-strain characteristics at various loading rates, a damage prediction model with a damage variable correction factor considering residual strength was employed, based on the modified Duncan-Chang model and damage theory of electrical resistivity, and the predicted results were in good agreement with the experimental data.\",\"PeriodicalId\":9382,\"journal\":{\"name\":\"Canadian Geotechnical Journal\",\"volume\":\"28 18\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Geotechnical Journal\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1139/cgj-2023-0283\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Geotechnical Journal","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1139/cgj-2023-0283","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

冻土石混合体的强度破坏和变形破坏往往制约着寒冷地区重大工程建设的安全或城市地下富水岩土体的空间开发。为了研究准静态范围内不同加载速率(0.3、0.6、3、6、30、60 mm·min-1)下FSRM的单轴强度损伤演化及破坏特征,采用电阻率监测和图像识别技术研究了FSRM的时间-应力-体积应变电阻率变化规律。结果表明:随着加载速率的增加,FSRM的峰值应力、峰值应变、初始屈服模量和切向模量先快速增大后缓慢增大,并存在临界加载速率和峰后破坏现象;在低加载速率(0.3 ~ 0.6 mm·min-1)、中加载速率(3 ~ 6 mm·min-1)和高加载速率(30 ~ 60 mm·min-1)下,分别观察到凸起破坏、斜剪破坏和破碎破坏三种不同类型的破坏模式。FSRM在不同加载速率下的宏观破坏是由强度的应变速率硬化和结构的损伤软化共同作用的结果。为了预测不同加载速率下的应力-应变特性,基于改进的Duncan-Chang模型和电阻率损伤理论,建立了考虑残余强度的损伤变量修正因子的损伤预测模型,预测结果与实验数据吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on Strength Damage Model Considering Resistivity and Failure Characteristics of the Frozen Soil-Rock Mixture Under Different Loading Rates
The strength damage and deformation failure of frozen soil-rock mixture (FSRM) often restrict the safety of major engineering construction in cold areas or the spatial development of urban underground water-rich rock and soil masses. In order to investigate the uniaxial strength damage evolution and failure characteristics of FSRM under different loading rates (0.3, 0.6, 3, 6, 30, 60 mm·min-1) in the quasi-static range, resistivity monitoring and image recognition technology were used to study the time-stress-volumetric strain-resistivity changes. The results indicate that the peak stress, peak strain, initial yield modulus, and tangential modulus of FSRM increase rapidly before increasing slowly as the loading rate increases, and there are critical loading rates and post-peak failure phenomenon. Three distinct types of failure modes, bulge failure, oblique shear failure, and fragmentation failure, were observed at low (0.3-0.6 mm·min-1), medium (3-6 mm·min-1) and high loading rates (30-60 mm·min-1), respectively. The macroscopic failure of the FSRM at different loading rates arises from a combination of strain rate hardening of strength and damage softening of the structure. To predict the stress-strain characteristics at various loading rates, a damage prediction model with a damage variable correction factor considering residual strength was employed, based on the modified Duncan-Chang model and damage theory of electrical resistivity, and the predicted results were in good agreement with the experimental data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Canadian Geotechnical Journal
Canadian Geotechnical Journal 地学-地球科学综合
CiteScore
7.20
自引率
5.60%
发文量
163
审稿时长
7.5 months
期刊介绍: The Canadian Geotechnical Journal features articles, notes, reviews, and discussions related to new developments in geotechnical and geoenvironmental engineering, and applied sciences. The topics of papers written by researchers and engineers/scientists active in industry include soil and rock mechanics, material properties and fundamental behaviour, site characterization, foundations, excavations, tunnels, dams and embankments, slopes, landslides, geological and rock engineering, ground improvement, hydrogeology and contaminant hydrogeology, geochemistry, waste management, geosynthetics, offshore engineering, ice, frozen ground and northern engineering, risk and reliability applications, and physical and numerical modelling. Contributions that have practical relevance are preferred, including case records. Purely theoretical contributions are not generally published unless they are on a topic of special interest (like unsaturated soil mechanics or cold regions geotechnics) or they have direct practical value.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信