Girish Nanjareddy, Veena M. Boregowda, Naeem Maroof
{"title":"使用基于双树复小波变换的正交频分复用模型评估水下通信的 WATERMARK 信道","authors":"Girish Nanjareddy, Veena M. Boregowda, Naeem Maroof","doi":"10.5815/ijcnis.2023.06.02","DOIUrl":null,"url":null,"abstract":"Underwater communication is one of the important research areas which involves design and development of communication systems that can demonstrate high data rate and low Bit Error Rate (BER). In this work three different modulation schemes are compared for their performances in terms of BER and Peak to Average Power Ratio (PAPR). The realistic channel model called WATERMARK is used as a benchmark to evaluate channel performances. The mathematical model is developed in MATLAB and channel environments such as Norway Oslo fjord (NOF1), Norway Continental Shelf (NCS1), Brest Commercial Harbour (BCH1), Kauai (KAU1, KAU2) are considered for modelling different underwater channels. The data symbols are modulated using Dual Tree Complex Wavelet Transform (DTCWT) Orthogonal Frequency Division Multiplexing (OFDM) model to generate multi subcarriers and are demodulated at the receiver considering underwater channel environments. The BER results are evaluated for channel depth less than 10m and 10-50m. An improvement of 2x10-2 in terms of BER is observed when compared with Fast Fourier Transform (FFT) based OFDM model.","PeriodicalId":36488,"journal":{"name":"International Journal of Computer Network and Information Security","volume":"47 18","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of WATERMARK Channel for Underwater Communication using Dual Tree Complex Wavelet Transform based Orthogonal Frequency Division Multiplexing Model\",\"authors\":\"Girish Nanjareddy, Veena M. Boregowda, Naeem Maroof\",\"doi\":\"10.5815/ijcnis.2023.06.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Underwater communication is one of the important research areas which involves design and development of communication systems that can demonstrate high data rate and low Bit Error Rate (BER). In this work three different modulation schemes are compared for their performances in terms of BER and Peak to Average Power Ratio (PAPR). The realistic channel model called WATERMARK is used as a benchmark to evaluate channel performances. The mathematical model is developed in MATLAB and channel environments such as Norway Oslo fjord (NOF1), Norway Continental Shelf (NCS1), Brest Commercial Harbour (BCH1), Kauai (KAU1, KAU2) are considered for modelling different underwater channels. The data symbols are modulated using Dual Tree Complex Wavelet Transform (DTCWT) Orthogonal Frequency Division Multiplexing (OFDM) model to generate multi subcarriers and are demodulated at the receiver considering underwater channel environments. The BER results are evaluated for channel depth less than 10m and 10-50m. An improvement of 2x10-2 in terms of BER is observed when compared with Fast Fourier Transform (FFT) based OFDM model.\",\"PeriodicalId\":36488,\"journal\":{\"name\":\"International Journal of Computer Network and Information Security\",\"volume\":\"47 18\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Network and Information Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5815/ijcnis.2023.06.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Network and Information Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5815/ijcnis.2023.06.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Evaluation of WATERMARK Channel for Underwater Communication using Dual Tree Complex Wavelet Transform based Orthogonal Frequency Division Multiplexing Model
Underwater communication is one of the important research areas which involves design and development of communication systems that can demonstrate high data rate and low Bit Error Rate (BER). In this work three different modulation schemes are compared for their performances in terms of BER and Peak to Average Power Ratio (PAPR). The realistic channel model called WATERMARK is used as a benchmark to evaluate channel performances. The mathematical model is developed in MATLAB and channel environments such as Norway Oslo fjord (NOF1), Norway Continental Shelf (NCS1), Brest Commercial Harbour (BCH1), Kauai (KAU1, KAU2) are considered for modelling different underwater channels. The data symbols are modulated using Dual Tree Complex Wavelet Transform (DTCWT) Orthogonal Frequency Division Multiplexing (OFDM) model to generate multi subcarriers and are demodulated at the receiver considering underwater channel environments. The BER results are evaluated for channel depth less than 10m and 10-50m. An improvement of 2x10-2 in terms of BER is observed when compared with Fast Fourier Transform (FFT) based OFDM model.