{"title":"应用溶胶-凝胶通用吸附剂涂层织物相吸附萃取膜结合高效液相色谱-紫外检测法监测牛奶和环境水样中干扰内分泌的化学物质","authors":"Basit Olayanju, A. Kabir, N. Manousi, K. Furton","doi":"10.1002/sscp.202300101","DOIUrl":null,"url":null,"abstract":"Here, we deployed sol‐gel universal sorbent‐coated fabric phase sorptive extraction membranes in tandem with high‐performance liquid chromatography equipped with an ultraviolet detector (HPLC‐UV) for the analysis of 10 endocrine‐disrupting chemicals (EDCs). Due to the varying polarities of the studied compounds indicated by their octanol/water partition coefficient ‘log Kow’ (1.47–5.07), the extraction membrane was designed with different functionalities that are capable of simultaneous interaction with compounds of diverse natures including polar, non‐polar, and ionic species via sol‐gel sorbent coating technology. An isocratic mode of HPLC‐UV at 55:45% acetonitrile:water (v/v) on a reverse phase C18 Zorbax column (5 μm, 150 mm, 4.6 mm) was used for the separation and quantitation. Calibration curves were found linear between 25 and 2000 ppb for all compounds except cortisone in the range of 25–1000 ppb which provided an R2 value above 0.9940 in all cases. The intra‐day reproducibility and inter‐day reproducibility were found in the range of 1.2–12.8 and 0.2–14.1 (expressed as percent relative standard deviation), respectively. The validated method was finally deployed for the analysis of environmental water and milk samples with estradiol showing the highest concentrations among the studied compounds.","PeriodicalId":21639,"journal":{"name":"SEPARATION SCIENCE PLUS","volume":"48 43","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of sol‐gel universal sorbent coated fabric phase sorptive extraction membranes in combination with high‐performance liquid chromatography‐ultraviolet detection to monitor endocrine‐disrupting chemicals in milk and environmental water samples\",\"authors\":\"Basit Olayanju, A. Kabir, N. Manousi, K. Furton\",\"doi\":\"10.1002/sscp.202300101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Here, we deployed sol‐gel universal sorbent‐coated fabric phase sorptive extraction membranes in tandem with high‐performance liquid chromatography equipped with an ultraviolet detector (HPLC‐UV) for the analysis of 10 endocrine‐disrupting chemicals (EDCs). Due to the varying polarities of the studied compounds indicated by their octanol/water partition coefficient ‘log Kow’ (1.47–5.07), the extraction membrane was designed with different functionalities that are capable of simultaneous interaction with compounds of diverse natures including polar, non‐polar, and ionic species via sol‐gel sorbent coating technology. An isocratic mode of HPLC‐UV at 55:45% acetonitrile:water (v/v) on a reverse phase C18 Zorbax column (5 μm, 150 mm, 4.6 mm) was used for the separation and quantitation. Calibration curves were found linear between 25 and 2000 ppb for all compounds except cortisone in the range of 25–1000 ppb which provided an R2 value above 0.9940 in all cases. The intra‐day reproducibility and inter‐day reproducibility were found in the range of 1.2–12.8 and 0.2–14.1 (expressed as percent relative standard deviation), respectively. The validated method was finally deployed for the analysis of environmental water and milk samples with estradiol showing the highest concentrations among the studied compounds.\",\"PeriodicalId\":21639,\"journal\":{\"name\":\"SEPARATION SCIENCE PLUS\",\"volume\":\"48 43\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SEPARATION SCIENCE PLUS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/sscp.202300101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SEPARATION SCIENCE PLUS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sscp.202300101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Application of sol‐gel universal sorbent coated fabric phase sorptive extraction membranes in combination with high‐performance liquid chromatography‐ultraviolet detection to monitor endocrine‐disrupting chemicals in milk and environmental water samples
Here, we deployed sol‐gel universal sorbent‐coated fabric phase sorptive extraction membranes in tandem with high‐performance liquid chromatography equipped with an ultraviolet detector (HPLC‐UV) for the analysis of 10 endocrine‐disrupting chemicals (EDCs). Due to the varying polarities of the studied compounds indicated by their octanol/water partition coefficient ‘log Kow’ (1.47–5.07), the extraction membrane was designed with different functionalities that are capable of simultaneous interaction with compounds of diverse natures including polar, non‐polar, and ionic species via sol‐gel sorbent coating technology. An isocratic mode of HPLC‐UV at 55:45% acetonitrile:water (v/v) on a reverse phase C18 Zorbax column (5 μm, 150 mm, 4.6 mm) was used for the separation and quantitation. Calibration curves were found linear between 25 and 2000 ppb for all compounds except cortisone in the range of 25–1000 ppb which provided an R2 value above 0.9940 in all cases. The intra‐day reproducibility and inter‐day reproducibility were found in the range of 1.2–12.8 and 0.2–14.1 (expressed as percent relative standard deviation), respectively. The validated method was finally deployed for the analysis of environmental water and milk samples with estradiol showing the highest concentrations among the studied compounds.