{"title":"为无源光网络提供基于贪婪优先级路由和波长分配的流量疏导功能","authors":"Ashok Kumar, Shiveta Bhat, Sonam Aggarwal, Sunil Semwal, Jyoti Batra","doi":"10.1515/joc-2023-0323","DOIUrl":null,"url":null,"abstract":"Abstract Today, in passive optical networks (PON) the major issue is call blocking and it is getting worse as there is an increase in the number of connection requests but the wavelength channels in fiber links are limited. In this research, greedy-based priority routing and wavelength assignment traffic grooming (GPRWATG) technique is proposed aimed at reducing call blockage. In this scheme, to avoid optical–electrical–optical correspondence, firstly the grooming of connection requests with same source destination (s–d) is performed. According to the priority of these groomed connection requests, wavelength assignment and routing is assigned. This approach not only addresses the call blocking issue but also aligns with industry demands for improved network infrastructure. The proposed work performance is analyzed for blocking probability (BP), congestion, and its performance is compared with the non-priority-based routing and wavelength assignment traffic grooming (NPRWATG) and priority-based routing and wavelength assignment traffic grooming (PRWATG) schemes. The proposed method has 23.6 % lower congestion as compared to PRWATG and 21 % lower congestion as compared to NPRWATG. Also, the BP of GPRWATG is 26 % less than PRWATG and 21 % less than NPRWATG. Thus, it can be analyzed that by using the proposed technique, the BP as well as the congestion of the network altogether is reduced in comparison to the existing state-of-art techniques.","PeriodicalId":16675,"journal":{"name":"Journal of Optical Communications","volume":"39 21","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Traffic grooming with greedy-based priority routing and wavelength assignment for passive optical networks\",\"authors\":\"Ashok Kumar, Shiveta Bhat, Sonam Aggarwal, Sunil Semwal, Jyoti Batra\",\"doi\":\"10.1515/joc-2023-0323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Today, in passive optical networks (PON) the major issue is call blocking and it is getting worse as there is an increase in the number of connection requests but the wavelength channels in fiber links are limited. In this research, greedy-based priority routing and wavelength assignment traffic grooming (GPRWATG) technique is proposed aimed at reducing call blockage. In this scheme, to avoid optical–electrical–optical correspondence, firstly the grooming of connection requests with same source destination (s–d) is performed. According to the priority of these groomed connection requests, wavelength assignment and routing is assigned. This approach not only addresses the call blocking issue but also aligns with industry demands for improved network infrastructure. The proposed work performance is analyzed for blocking probability (BP), congestion, and its performance is compared with the non-priority-based routing and wavelength assignment traffic grooming (NPRWATG) and priority-based routing and wavelength assignment traffic grooming (PRWATG) schemes. The proposed method has 23.6 % lower congestion as compared to PRWATG and 21 % lower congestion as compared to NPRWATG. Also, the BP of GPRWATG is 26 % less than PRWATG and 21 % less than NPRWATG. Thus, it can be analyzed that by using the proposed technique, the BP as well as the congestion of the network altogether is reduced in comparison to the existing state-of-art techniques.\",\"PeriodicalId\":16675,\"journal\":{\"name\":\"Journal of Optical Communications\",\"volume\":\"39 21\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optical Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/joc-2023-0323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optical Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/joc-2023-0323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Traffic grooming with greedy-based priority routing and wavelength assignment for passive optical networks
Abstract Today, in passive optical networks (PON) the major issue is call blocking and it is getting worse as there is an increase in the number of connection requests but the wavelength channels in fiber links are limited. In this research, greedy-based priority routing and wavelength assignment traffic grooming (GPRWATG) technique is proposed aimed at reducing call blockage. In this scheme, to avoid optical–electrical–optical correspondence, firstly the grooming of connection requests with same source destination (s–d) is performed. According to the priority of these groomed connection requests, wavelength assignment and routing is assigned. This approach not only addresses the call blocking issue but also aligns with industry demands for improved network infrastructure. The proposed work performance is analyzed for blocking probability (BP), congestion, and its performance is compared with the non-priority-based routing and wavelength assignment traffic grooming (NPRWATG) and priority-based routing and wavelength assignment traffic grooming (PRWATG) schemes. The proposed method has 23.6 % lower congestion as compared to PRWATG and 21 % lower congestion as compared to NPRWATG. Also, the BP of GPRWATG is 26 % less than PRWATG and 21 % less than NPRWATG. Thus, it can be analyzed that by using the proposed technique, the BP as well as the congestion of the network altogether is reduced in comparison to the existing state-of-art techniques.
期刊介绍:
This is the journal for all scientists working in optical communications. Journal of Optical Communications was the first international publication covering all fields of optical communications with guided waves. It is the aim of the journal to serve all scientists engaged in optical communications as a comprehensive journal tailored to their needs and as a forum for their publications. The journal focuses on the main fields in optical communications