关于二级欧拉积的 L 型函数的说明

IF 0.7 Q2 MATHEMATICS
Ali H. Hakami
{"title":"关于二级欧拉积的 L 型函数的说明","authors":"Ali H. Hakami","doi":"10.28924/2291-8639-21-2023-135","DOIUrl":null,"url":null,"abstract":"In this paper we are concerned with a special case of Euler functions. We shall study the Euler product of degree two (Type of L-Euler functions) and give some results. More precisely, we shall deal with some Dirichlet series associated with a class of arithmetic {an} under the condition that apapk = apk+1 + pαapk−1, provided p is prime, k≥1, and α is a fixed complex number. We will demonstrate that there is an Euler’s product for the Dirichlet series Σnan/ns. This result is important in analysis, especially in analytic number theory.","PeriodicalId":45204,"journal":{"name":"International Journal of Analysis and Applications","volume":"42 16","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Note on Type L-Functions of Euler Product of Second Degree\",\"authors\":\"Ali H. Hakami\",\"doi\":\"10.28924/2291-8639-21-2023-135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we are concerned with a special case of Euler functions. We shall study the Euler product of degree two (Type of L-Euler functions) and give some results. More precisely, we shall deal with some Dirichlet series associated with a class of arithmetic {an} under the condition that apapk = apk+1 + pαapk−1, provided p is prime, k≥1, and α is a fixed complex number. We will demonstrate that there is an Euler’s product for the Dirichlet series Σnan/ns. This result is important in analysis, especially in analytic number theory.\",\"PeriodicalId\":45204,\"journal\":{\"name\":\"International Journal of Analysis and Applications\",\"volume\":\"42 16\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28924/2291-8639-21-2023-135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28924/2291-8639-21-2023-135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究欧拉函数的一种特殊情况。我们将研究二阶欧拉积(l -欧拉函数的类型)并给出一些结果。更确切地说,我们将处理与一类算术{an}相关的Dirichlet级数,在apapk = apk+1 + pαapk−1的条件下,假设p为素数,k≥1,且α为固定复数。我们将证明狄利克雷级数Σnan/ns有一个欧拉积。这个结果在分析中,特别是在解析数论中是重要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Note on Type L-Functions of Euler Product of Second Degree
In this paper we are concerned with a special case of Euler functions. We shall study the Euler product of degree two (Type of L-Euler functions) and give some results. More precisely, we shall deal with some Dirichlet series associated with a class of arithmetic {an} under the condition that apapk = apk+1 + pαapk−1, provided p is prime, k≥1, and α is a fixed complex number. We will demonstrate that there is an Euler’s product for the Dirichlet series Σnan/ns. This result is important in analysis, especially in analytic number theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
10.00%
发文量
60
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信