直接观测大气边界层的波相干压力功

IF 2.8 2区 地球科学 Q1 OCEANOGRAPHY
Seth F. Zippel, James B. Edson, M. E. Scully, Oaklin R. Keefe
{"title":"直接观测大气边界层的波相干压力功","authors":"Seth F. Zippel, James B. Edson, M. E. Scully, Oaklin R. Keefe","doi":"10.1175/jpo-d-23-0097.1","DOIUrl":null,"url":null,"abstract":"\nSurface waves grow through a mechanism in which atmospheric pressure is offset in phase from the wavy surface. A pattern of low atmospheric pressure over upward wave orbital motions (leeward side) and high pressure over downward wave orbital motions (windward side) travels with the water wave, leading to a pumping of kinetic energy from the atmospheric boundary layer into the waves. This pressure pattern persists above the air/water interface, modifying the turbulent kinetic energy in the atmospheric wave-affected boundary layer. Here, we present field measurements of wave-coherent atmospheric pressure and velocity to elucidate the transfer of energy from the atmospheric turbulence budget into waves through wave-coherent atmospheric pressure work. Measurements show that the phase between wave-coherent pressure and velocity is shifted slightly above 90° when wind speed exceeds the wave phase speed, allowing for a downwards energy flux via pressure work. Although previous studies have reported wave-coherent pressure, to the authors’ knowledge, these are the first reported field measurements of wave-coherent pressure work. Measured pressure work cospectra are consistent with an existing model for atmospheric pressure work. The implications for these measurements and their importance to the turbulent kinetic energy budget are discussed.","PeriodicalId":56115,"journal":{"name":"Journal of Physical Oceanography","volume":"58 18","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct Observation of Wave-coherent Pressure Work in the Atmospheric Boundary Layer\",\"authors\":\"Seth F. Zippel, James B. Edson, M. E. Scully, Oaklin R. Keefe\",\"doi\":\"10.1175/jpo-d-23-0097.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nSurface waves grow through a mechanism in which atmospheric pressure is offset in phase from the wavy surface. A pattern of low atmospheric pressure over upward wave orbital motions (leeward side) and high pressure over downward wave orbital motions (windward side) travels with the water wave, leading to a pumping of kinetic energy from the atmospheric boundary layer into the waves. This pressure pattern persists above the air/water interface, modifying the turbulent kinetic energy in the atmospheric wave-affected boundary layer. Here, we present field measurements of wave-coherent atmospheric pressure and velocity to elucidate the transfer of energy from the atmospheric turbulence budget into waves through wave-coherent atmospheric pressure work. Measurements show that the phase between wave-coherent pressure and velocity is shifted slightly above 90° when wind speed exceeds the wave phase speed, allowing for a downwards energy flux via pressure work. Although previous studies have reported wave-coherent pressure, to the authors’ knowledge, these are the first reported field measurements of wave-coherent pressure work. Measured pressure work cospectra are consistent with an existing model for atmospheric pressure work. The implications for these measurements and their importance to the turbulent kinetic energy budget are discussed.\",\"PeriodicalId\":56115,\"journal\":{\"name\":\"Journal of Physical Oceanography\",\"volume\":\"58 18\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physical Oceanography\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/jpo-d-23-0097.1\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical Oceanography","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jpo-d-23-0097.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

摘要

表面波是通过一种机制产生的,在这种机制中,大气压力与波浪形表面相抵消。随着水波的传播,上升波的轨道运动(背风面)上空的低气压和下降波的轨道运动(迎风面)上空的高压形成了一种模式,导致从大气边界层向水波输送动能。这种压力模式在空气/水界面上方持续存在,改变了大气波影响边界层中的湍流动能。在这里,我们提供了波相干大气压力和速度的现场测量,以阐明通过波相干大气压力功从大气湍流预算到波的能量转移。测量结果表明,当风速超过波相速度时,波相干压力与速度之间的相位偏移略高于90°,从而允许通过压力功向下的能量通量。虽然之前的研究报告了波相干压力,但据作者所知,这是第一次报道的波相干压力工作的现场测量。实测压力功共谱与现有的大气压力功模型一致。讨论了这些测量的意义及其对湍流动能收支的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Direct Observation of Wave-coherent Pressure Work in the Atmospheric Boundary Layer
Surface waves grow through a mechanism in which atmospheric pressure is offset in phase from the wavy surface. A pattern of low atmospheric pressure over upward wave orbital motions (leeward side) and high pressure over downward wave orbital motions (windward side) travels with the water wave, leading to a pumping of kinetic energy from the atmospheric boundary layer into the waves. This pressure pattern persists above the air/water interface, modifying the turbulent kinetic energy in the atmospheric wave-affected boundary layer. Here, we present field measurements of wave-coherent atmospheric pressure and velocity to elucidate the transfer of energy from the atmospheric turbulence budget into waves through wave-coherent atmospheric pressure work. Measurements show that the phase between wave-coherent pressure and velocity is shifted slightly above 90° when wind speed exceeds the wave phase speed, allowing for a downwards energy flux via pressure work. Although previous studies have reported wave-coherent pressure, to the authors’ knowledge, these are the first reported field measurements of wave-coherent pressure work. Measured pressure work cospectra are consistent with an existing model for atmospheric pressure work. The implications for these measurements and their importance to the turbulent kinetic energy budget are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
20.00%
发文量
200
审稿时长
4.5 months
期刊介绍: The Journal of Physical Oceanography (JPO) (ISSN: 0022-3670; eISSN: 1520-0485) publishes research related to the physics of the ocean and to processes operating at its boundaries. Observational, theoretical, and modeling studies are all welcome, especially those that focus on elucidating specific physical processes. Papers that investigate interactions with other components of the Earth system (e.g., ocean–atmosphere, physical–biological, and physical–chemical interactions) as well as studies of other fluid systems (e.g., lakes and laboratory tanks) are also invited, as long as their focus is on understanding the ocean or its role in the Earth system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信