挡土墙的地震设计荷载

IF 0.8 Q4 ENGINEERING, GEOLOGICAL
John Wood
{"title":"挡土墙的地震设计荷载","authors":"John Wood","doi":"10.5459/bnzsee.1618","DOIUrl":null,"url":null,"abstract":"Free-standing retaining walls are usually designed for earthquake loads assuming cohesionless backfill soil and using the Mononobe-Okabe method. This simple design approach has led to satisfactory performance and is supported by laboratory testing and analytical studies. For major wall structures there are a number of refinements to the method that should be considered. In the paper methods of assessing the influence on the earthquake loads of the flexibility of the wall, soil cohesion and ground water in the backfill are presented.  Equations for predicting failure plane angles to allow a better assessment of the soil properties within the failure wedge are included. Procedures for estimating the outward displacement and the influence of passive resistance and wall geometry on the sliding resistance are discussed. Design charts are presented which allow the magnitude of these refinements to be rapidly assessed.","PeriodicalId":46396,"journal":{"name":"Bulletin of the New Zealand Society for Earthquake Engineering","volume":"1 11","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Earthquake design loads for retaining walls\",\"authors\":\"John Wood\",\"doi\":\"10.5459/bnzsee.1618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Free-standing retaining walls are usually designed for earthquake loads assuming cohesionless backfill soil and using the Mononobe-Okabe method. This simple design approach has led to satisfactory performance and is supported by laboratory testing and analytical studies. For major wall structures there are a number of refinements to the method that should be considered. In the paper methods of assessing the influence on the earthquake loads of the flexibility of the wall, soil cohesion and ground water in the backfill are presented.  Equations for predicting failure plane angles to allow a better assessment of the soil properties within the failure wedge are included. Procedures for estimating the outward displacement and the influence of passive resistance and wall geometry on the sliding resistance are discussed. Design charts are presented which allow the magnitude of these refinements to be rapidly assessed.\",\"PeriodicalId\":46396,\"journal\":{\"name\":\"Bulletin of the New Zealand Society for Earthquake Engineering\",\"volume\":\"1 11\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the New Zealand Society for Earthquake Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5459/bnzsee.1618\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the New Zealand Society for Earthquake Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5459/bnzsee.1618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

独立式挡土墙通常设计用于地震荷载,假定无黏性回填土并采用Mononobe-Okabe法。这种简单的设计方法获得了令人满意的性能,并得到了实验室测试和分析研究的支持。对于主要的墙体结构,有许多应该考虑的改进方法。本文介绍了墙体柔韧性、土黏聚力和回填体地下水对地震荷载影响的评估方法。包括预测破坏面角度的方程,以便更好地评估破坏楔内的土壤特性。讨论了向外位移的估计方法以及被动阻力和壁面几何形状对滑动阻力的影响。设计图表的提出,允许这些改进的幅度,以迅速评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Earthquake design loads for retaining walls
Free-standing retaining walls are usually designed for earthquake loads assuming cohesionless backfill soil and using the Mononobe-Okabe method. This simple design approach has led to satisfactory performance and is supported by laboratory testing and analytical studies. For major wall structures there are a number of refinements to the method that should be considered. In the paper methods of assessing the influence on the earthquake loads of the flexibility of the wall, soil cohesion and ground water in the backfill are presented.  Equations for predicting failure plane angles to allow a better assessment of the soil properties within the failure wedge are included. Procedures for estimating the outward displacement and the influence of passive resistance and wall geometry on the sliding resistance are discussed. Design charts are presented which allow the magnitude of these refinements to be rapidly assessed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
17.60%
发文量
14
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信