利用顺序凸编程和自适应网格细化进行低推力转移轨道优化

IF 1.3 4区 工程技术 Q2 ENGINEERING, AEROSPACE
Jisong Zhao, Jia Li, Shuanglin Li
{"title":"利用顺序凸编程和自适应网格细化进行低推力转移轨道优化","authors":"Jisong Zhao, Jia Li, Shuanglin Li","doi":"10.2514/1.a35817","DOIUrl":null,"url":null,"abstract":"In this paper, a mesh-adaptive Hermite–Simpson sequential convex programming (SCP) method is proposed for solving low-thrust orbit transfer problems efficiently and accurately. First, we develop a Hermite–Simpson convex programming method that utilizes quadratic polynomial control interpolation to improve discretization accuracy. Then, a mesh-adaptive Hermite–Simpson SCP method is proposed by incorporating an improved adaptive mesh refinement method into the Hermite–Simpson SCP method for solving optimal control accurately and efficiently. The proposed method is applied to two-dimensional time-optimal and three-dimensional fuel-optimal low-thrust orbit transfer problems to show its features, and its performance is compared against several existing methods. Numerical simulations show that the proposed method achieves more accurate solutions while being computationally more efficient compared to the trapezoidal SCP method. In comparison to the GPOPS-II software, the proposed method produces solutions of comparable accuracy but is more computationally efficient.","PeriodicalId":50048,"journal":{"name":"Journal of Spacecraft and Rockets","volume":"6 11","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-Thrust Transfer Orbit Optimization Using Sequential Convex Programming and Adaptive Mesh Refinement\",\"authors\":\"Jisong Zhao, Jia Li, Shuanglin Li\",\"doi\":\"10.2514/1.a35817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a mesh-adaptive Hermite–Simpson sequential convex programming (SCP) method is proposed for solving low-thrust orbit transfer problems efficiently and accurately. First, we develop a Hermite–Simpson convex programming method that utilizes quadratic polynomial control interpolation to improve discretization accuracy. Then, a mesh-adaptive Hermite–Simpson SCP method is proposed by incorporating an improved adaptive mesh refinement method into the Hermite–Simpson SCP method for solving optimal control accurately and efficiently. The proposed method is applied to two-dimensional time-optimal and three-dimensional fuel-optimal low-thrust orbit transfer problems to show its features, and its performance is compared against several existing methods. Numerical simulations show that the proposed method achieves more accurate solutions while being computationally more efficient compared to the trapezoidal SCP method. In comparison to the GPOPS-II software, the proposed method produces solutions of comparable accuracy but is more computationally efficient.\",\"PeriodicalId\":50048,\"journal\":{\"name\":\"Journal of Spacecraft and Rockets\",\"volume\":\"6 11\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Spacecraft and Rockets\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2514/1.a35817\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spacecraft and Rockets","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.a35817","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

针对低推力轨道转移问题,提出了一种网格自适应Hermite-Simpson序贯凸规划(SCP)方法。首先,我们开发了一种Hermite-Simpson凸规划方法,该方法利用二次多项式控制插值来提高离散化精度。然后,将改进的自适应网格细化方法引入到Hermite-Simpson SCP方法中,提出了一种网格自适应的Hermite-Simpson SCP方法,以精确、高效地求解最优控制。将该方法应用于二维时间最优和三维燃料最优的低推力轨道转移问题,并与现有方法进行了性能比较。数值模拟结果表明,与梯形SCP方法相比,该方法得到了更精确的解,且计算效率更高。与gpop - ii软件相比,所提出的方法产生的解具有相当的精度,但计算效率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-Thrust Transfer Orbit Optimization Using Sequential Convex Programming and Adaptive Mesh Refinement
In this paper, a mesh-adaptive Hermite–Simpson sequential convex programming (SCP) method is proposed for solving low-thrust orbit transfer problems efficiently and accurately. First, we develop a Hermite–Simpson convex programming method that utilizes quadratic polynomial control interpolation to improve discretization accuracy. Then, a mesh-adaptive Hermite–Simpson SCP method is proposed by incorporating an improved adaptive mesh refinement method into the Hermite–Simpson SCP method for solving optimal control accurately and efficiently. The proposed method is applied to two-dimensional time-optimal and three-dimensional fuel-optimal low-thrust orbit transfer problems to show its features, and its performance is compared against several existing methods. Numerical simulations show that the proposed method achieves more accurate solutions while being computationally more efficient compared to the trapezoidal SCP method. In comparison to the GPOPS-II software, the proposed method produces solutions of comparable accuracy but is more computationally efficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Spacecraft and Rockets
Journal of Spacecraft and Rockets 工程技术-工程:宇航
CiteScore
3.60
自引率
18.80%
发文量
185
审稿时长
4.5 months
期刊介绍: This Journal, that started it all back in 1963, is devoted to the advancement of the science and technology of astronautics and aeronautics through the dissemination of original archival research papers disclosing new theoretical developments and/or experimental result. The topics include aeroacoustics, aerodynamics, combustion, fundamentals of propulsion, fluid mechanics and reacting flows, fundamental aspects of the aerospace environment, hydrodynamics, lasers and associated phenomena, plasmas, research instrumentation and facilities, structural mechanics and materials, optimization, and thermomechanics and thermochemistry. Papers also are sought which review in an intensive manner the results of recent research developments on any of the topics listed above.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信