{"title":"具有双重复用和卷积捷径的深度网络","authors":"Qian Liu, Cunbao Wang","doi":"10.1049/cvi2.12260","DOIUrl":null,"url":null,"abstract":"<p>The authors design a novel convolutional network architecture, that is, deep network with double reuses and convolutional shortcuts, in which new compressed reuse units are presented. Compressed reuse units combine the reused features from the first 3 × 3 convolutional layer and the features from the last 3 × 3 convolutional layer to produce new feature maps in the current compressed reuse unit, simultaneously reuse the feature maps from all previous compressed reuse units to generate a shortcut by an 1 × 1 convolution, and then concatenate these new maps and this shortcut as the input to next compressed reuse unit. Deep network with double reuses and convolutional shortcuts uses the feature reuse concatenation from all compressed reuse units as the final features for classification. In deep network with double reuses and convolutional shortcuts, the inner- and outer-unit feature reuses and the convolutional shortcut compressed from the previous outer-unit feature reuses can alleviate the vanishing-gradient problem by strengthening the forward feature propagation inside and outside the units, improve the effectiveness of features and reduce calculation cost. Experimental results on CIFAR-10, CIFAR-100, ImageNet ILSVRC 2012, Pascal VOC2007 and MS COCO benchmark databases demonstrate the effectiveness of authors’ architecture for object recognition and detection, as compared with the state-of-the-art.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"18 4","pages":"512-525"},"PeriodicalIF":1.5000,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12260","citationCount":"0","resultStr":"{\"title\":\"Deep network with double reuses and convolutional shortcuts\",\"authors\":\"Qian Liu, Cunbao Wang\",\"doi\":\"10.1049/cvi2.12260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The authors design a novel convolutional network architecture, that is, deep network with double reuses and convolutional shortcuts, in which new compressed reuse units are presented. Compressed reuse units combine the reused features from the first 3 × 3 convolutional layer and the features from the last 3 × 3 convolutional layer to produce new feature maps in the current compressed reuse unit, simultaneously reuse the feature maps from all previous compressed reuse units to generate a shortcut by an 1 × 1 convolution, and then concatenate these new maps and this shortcut as the input to next compressed reuse unit. Deep network with double reuses and convolutional shortcuts uses the feature reuse concatenation from all compressed reuse units as the final features for classification. In deep network with double reuses and convolutional shortcuts, the inner- and outer-unit feature reuses and the convolutional shortcut compressed from the previous outer-unit feature reuses can alleviate the vanishing-gradient problem by strengthening the forward feature propagation inside and outside the units, improve the effectiveness of features and reduce calculation cost. Experimental results on CIFAR-10, CIFAR-100, ImageNet ILSVRC 2012, Pascal VOC2007 and MS COCO benchmark databases demonstrate the effectiveness of authors’ architecture for object recognition and detection, as compared with the state-of-the-art.</p>\",\"PeriodicalId\":56304,\"journal\":{\"name\":\"IET Computer Vision\",\"volume\":\"18 4\",\"pages\":\"512-525\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12260\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12260\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12260","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Deep network with double reuses and convolutional shortcuts
The authors design a novel convolutional network architecture, that is, deep network with double reuses and convolutional shortcuts, in which new compressed reuse units are presented. Compressed reuse units combine the reused features from the first 3 × 3 convolutional layer and the features from the last 3 × 3 convolutional layer to produce new feature maps in the current compressed reuse unit, simultaneously reuse the feature maps from all previous compressed reuse units to generate a shortcut by an 1 × 1 convolution, and then concatenate these new maps and this shortcut as the input to next compressed reuse unit. Deep network with double reuses and convolutional shortcuts uses the feature reuse concatenation from all compressed reuse units as the final features for classification. In deep network with double reuses and convolutional shortcuts, the inner- and outer-unit feature reuses and the convolutional shortcut compressed from the previous outer-unit feature reuses can alleviate the vanishing-gradient problem by strengthening the forward feature propagation inside and outside the units, improve the effectiveness of features and reduce calculation cost. Experimental results on CIFAR-10, CIFAR-100, ImageNet ILSVRC 2012, Pascal VOC2007 and MS COCO benchmark databases demonstrate the effectiveness of authors’ architecture for object recognition and detection, as compared with the state-of-the-art.
期刊介绍:
IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision.
IET Computer Vision welcomes submissions on the following topics:
Biologically and perceptually motivated approaches to low level vision (feature detection, etc.);
Perceptual grouping and organisation
Representation, analysis and matching of 2D and 3D shape
Shape-from-X
Object recognition
Image understanding
Learning with visual inputs
Motion analysis and object tracking
Multiview scene analysis
Cognitive approaches in low, mid and high level vision
Control in visual systems
Colour, reflectance and light
Statistical and probabilistic models
Face and gesture
Surveillance
Biometrics and security
Robotics
Vehicle guidance
Automatic model aquisition
Medical image analysis and understanding
Aerial scene analysis and remote sensing
Deep learning models in computer vision
Both methodological and applications orientated papers are welcome.
Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review.
Special Issues Current Call for Papers:
Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf
Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf