封闭的威尔莫尔能源和区域功能

IF 0.7 4区 数学 Q2 MATHEMATICS
Marco Pozzetta
{"title":"封闭的威尔莫尔能源和区域功能","authors":"Marco Pozzetta","doi":"10.4310/cag.2023.v31.n2.a7","DOIUrl":null,"url":null,"abstract":"We consider minimization problems of functionals given by the difference between the Willmore functional of a closed surface and its area, when the latter is multiplied by a positive constant weight $\\Lambda$ and when the surfaces are confined in the closure of a bounded open set $\\Omega \\subset \\mathbb{R}^3$. We explicitly solve the minimization problem in the case $\\Omega = B_1$. We give a description of the value of the infima and of the convergence of minimizing sequences to integer rectifiable varifolds, depending on the parameter $\\Lambda$. We also analyze some properties of these functionals and we provide some examples. Finally we prove the existence of a $C^{1,\\alpha} \\cap W^{2,2}$ embedded surface that is also $C^\\infty$ inside $\\Omega$ and such that it achieves the infimum of the problem when the weight $\\Lambda$ is sufficiently small.","PeriodicalId":50662,"journal":{"name":"Communications in Analysis and Geometry","volume":"8 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Confined Willmore energy and the area functional\",\"authors\":\"Marco Pozzetta\",\"doi\":\"10.4310/cag.2023.v31.n2.a7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider minimization problems of functionals given by the difference between the Willmore functional of a closed surface and its area, when the latter is multiplied by a positive constant weight $\\\\Lambda$ and when the surfaces are confined in the closure of a bounded open set $\\\\Omega \\\\subset \\\\mathbb{R}^3$. We explicitly solve the minimization problem in the case $\\\\Omega = B_1$. We give a description of the value of the infima and of the convergence of minimizing sequences to integer rectifiable varifolds, depending on the parameter $\\\\Lambda$. We also analyze some properties of these functionals and we provide some examples. Finally we prove the existence of a $C^{1,\\\\alpha} \\\\cap W^{2,2}$ embedded surface that is also $C^\\\\infty$ inside $\\\\Omega$ and such that it achieves the infimum of the problem when the weight $\\\\Lambda$ is sufficiently small.\",\"PeriodicalId\":50662,\"journal\":{\"name\":\"Communications in Analysis and Geometry\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cag.2023.v31.n2.a7\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cag.2023.v31.n2.a7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

我们考虑了由封闭曲面的威尔莫尔函数与其面积之差给出的函数的最小化问题,当后者乘以一个正的常数权重 $\Lambda$ 时,当曲面被限制在一个有界开放集 $\Omega \subset \mathbb{R}^3$ 的闭合中时。我们明确求解了 $\Omega = B_1$ 情况下的最小化问题。我们根据参数 $\Lambda$ 描述了最小化序列的下限值和收敛到整数可整流变折点的情况。我们还分析了这些函数的一些性质,并提供了一些例子。最后,我们证明了$C^{1,\alpha} \cap W^{2,2}$ 嵌入曲面的存在,它也是$C^\infty$ 在$\Omega$ 内部,并且当权重$\Lambda$ 足够小时,它能达到问题的下极值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Confined Willmore energy and the area functional
We consider minimization problems of functionals given by the difference between the Willmore functional of a closed surface and its area, when the latter is multiplied by a positive constant weight $\Lambda$ and when the surfaces are confined in the closure of a bounded open set $\Omega \subset \mathbb{R}^3$. We explicitly solve the minimization problem in the case $\Omega = B_1$. We give a description of the value of the infima and of the convergence of minimizing sequences to integer rectifiable varifolds, depending on the parameter $\Lambda$. We also analyze some properties of these functionals and we provide some examples. Finally we prove the existence of a $C^{1,\alpha} \cap W^{2,2}$ embedded surface that is also $C^\infty$ inside $\Omega$ and such that it achieves the infimum of the problem when the weight $\Lambda$ is sufficiently small.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
4
审稿时长
>12 weeks
期刊介绍: Publishes high-quality papers on subjects related to classical analysis, partial differential equations, algebraic geometry, differential geometry, and topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信