{"title":"虚拟现实场景分类法:识别和设计无障碍场景浏览技术","authors":"Rachel L. Franz, Sasa Junuzovic, Martez Mott","doi":"10.1145/3635142","DOIUrl":null,"url":null,"abstract":"<p>Virtual environments (VEs) afford similar interactions to those in physical environments: individuals can navigate and manipulate objects. Yet, a prerequisite for these interactions is being able to view the environment. Despite the existence of numerous scene-viewing techniques (i.e., interaction techniques that facilitate the visual perception of virtual scenes), there is no guidance to help designers choose which techniques to implement. We propose a scene taxonomy based on the visual structure and task within a VE by drawing on literature from cognitive psychology and computer vision, as well as virtual reality (VR) applications. We demonstrate how the taxonomy can be used by applying it to an accessibility problem, namely limited head mobility. We used the taxonomy to classify existing scene-viewing techniques and generate three new techniques that do not require head movement. In our evaluation of the techniques with 16 participants, we discovered that participants identified trade-offs in design considerations such as accessibility, realism, and spatial awareness, that would influence whether they would use the new techniques. Our results demonstrate the potential of the scene taxonomy to help designers reason about the relationships between VR interactions, tasks, and environments.</p>","PeriodicalId":50917,"journal":{"name":"ACM Transactions on Computer-Human Interaction","volume":"3 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Virtual Reality Scene Taxonomy: Identifying and Designing Accessible Scene-Viewing Techniques\",\"authors\":\"Rachel L. Franz, Sasa Junuzovic, Martez Mott\",\"doi\":\"10.1145/3635142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Virtual environments (VEs) afford similar interactions to those in physical environments: individuals can navigate and manipulate objects. Yet, a prerequisite for these interactions is being able to view the environment. Despite the existence of numerous scene-viewing techniques (i.e., interaction techniques that facilitate the visual perception of virtual scenes), there is no guidance to help designers choose which techniques to implement. We propose a scene taxonomy based on the visual structure and task within a VE by drawing on literature from cognitive psychology and computer vision, as well as virtual reality (VR) applications. We demonstrate how the taxonomy can be used by applying it to an accessibility problem, namely limited head mobility. We used the taxonomy to classify existing scene-viewing techniques and generate three new techniques that do not require head movement. In our evaluation of the techniques with 16 participants, we discovered that participants identified trade-offs in design considerations such as accessibility, realism, and spatial awareness, that would influence whether they would use the new techniques. Our results demonstrate the potential of the scene taxonomy to help designers reason about the relationships between VR interactions, tasks, and environments.</p>\",\"PeriodicalId\":50917,\"journal\":{\"name\":\"ACM Transactions on Computer-Human Interaction\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Computer-Human Interaction\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3635142\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computer-Human Interaction","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3635142","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
A Virtual Reality Scene Taxonomy: Identifying and Designing Accessible Scene-Viewing Techniques
Virtual environments (VEs) afford similar interactions to those in physical environments: individuals can navigate and manipulate objects. Yet, a prerequisite for these interactions is being able to view the environment. Despite the existence of numerous scene-viewing techniques (i.e., interaction techniques that facilitate the visual perception of virtual scenes), there is no guidance to help designers choose which techniques to implement. We propose a scene taxonomy based on the visual structure and task within a VE by drawing on literature from cognitive psychology and computer vision, as well as virtual reality (VR) applications. We demonstrate how the taxonomy can be used by applying it to an accessibility problem, namely limited head mobility. We used the taxonomy to classify existing scene-viewing techniques and generate three new techniques that do not require head movement. In our evaluation of the techniques with 16 participants, we discovered that participants identified trade-offs in design considerations such as accessibility, realism, and spatial awareness, that would influence whether they would use the new techniques. Our results demonstrate the potential of the scene taxonomy to help designers reason about the relationships between VR interactions, tasks, and environments.
期刊介绍:
This ACM Transaction seeks to be the premier archival journal in the multidisciplinary field of human-computer interaction. Since its first issue in March 1994, it has presented work of the highest scientific quality that contributes to the practice in the present and future. The primary emphasis is on results of broad application, but the journal considers original work focused on specific domains, on special requirements, on ethical issues -- the full range of design, development, and use of interactive systems.