{"title":"组合重新分配机制","authors":"Liad Blumrosen, Shahar Dobzinski","doi":"10.1007/s00453-023-01191-3","DOIUrl":null,"url":null,"abstract":"<div><p>We consider reallocation problems in settings where the initial endowment of each agent consists of a subset of the resources. The private information of the players is their value for every possible subset of the resources. The goal is to redistribute resources among agents to maximize efficiency. Monetary transfers are allowed, but participation is voluntary. We develop incentive-compatible, individually-rational and budget-balanced mechanisms for two settings in which agents have complex multi-parameter valuations, both settings include double auctions as a special case. The first setting is combinatorial exchanges, where we provide a mechanism that achieves a logarithmic approximation to the optimal efficiency when valuations are subadditive. The second setting is Arrow–Debreu markets for a single divisible good, where we present a constant approximation mechanism. The first result is given for a Bayesian setting, where the latter result is for prior-free environments.</p></div>","PeriodicalId":50824,"journal":{"name":"Algorithmica","volume":"86 4","pages":"1246 - 1262"},"PeriodicalIF":0.9000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combinatorial Reallocation Mechanisms\",\"authors\":\"Liad Blumrosen, Shahar Dobzinski\",\"doi\":\"10.1007/s00453-023-01191-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider reallocation problems in settings where the initial endowment of each agent consists of a subset of the resources. The private information of the players is their value for every possible subset of the resources. The goal is to redistribute resources among agents to maximize efficiency. Monetary transfers are allowed, but participation is voluntary. We develop incentive-compatible, individually-rational and budget-balanced mechanisms for two settings in which agents have complex multi-parameter valuations, both settings include double auctions as a special case. The first setting is combinatorial exchanges, where we provide a mechanism that achieves a logarithmic approximation to the optimal efficiency when valuations are subadditive. The second setting is Arrow–Debreu markets for a single divisible good, where we present a constant approximation mechanism. The first result is given for a Bayesian setting, where the latter result is for prior-free environments.</p></div>\",\"PeriodicalId\":50824,\"journal\":{\"name\":\"Algorithmica\",\"volume\":\"86 4\",\"pages\":\"1246 - 1262\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algorithmica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00453-023-01191-3\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithmica","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s00453-023-01191-3","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
We consider reallocation problems in settings where the initial endowment of each agent consists of a subset of the resources. The private information of the players is their value for every possible subset of the resources. The goal is to redistribute resources among agents to maximize efficiency. Monetary transfers are allowed, but participation is voluntary. We develop incentive-compatible, individually-rational and budget-balanced mechanisms for two settings in which agents have complex multi-parameter valuations, both settings include double auctions as a special case. The first setting is combinatorial exchanges, where we provide a mechanism that achieves a logarithmic approximation to the optimal efficiency when valuations are subadditive. The second setting is Arrow–Debreu markets for a single divisible good, where we present a constant approximation mechanism. The first result is given for a Bayesian setting, where the latter result is for prior-free environments.
期刊介绍:
Algorithmica is an international journal which publishes theoretical papers on algorithms that address problems arising in practical areas, and experimental papers of general appeal for practical importance or techniques. The development of algorithms is an integral part of computer science. The increasing complexity and scope of computer applications makes the design of efficient algorithms essential.
Algorithmica covers algorithms in applied areas such as: VLSI, distributed computing, parallel processing, automated design, robotics, graphics, data base design, software tools, as well as algorithms in fundamental areas such as sorting, searching, data structures, computational geometry, and linear programming.
In addition, the journal features two special sections: Application Experience, presenting findings obtained from applications of theoretical results to practical situations, and Problems, offering short papers presenting problems on selected topics of computer science.