$$\mathbb{T}^2$$上涡度均值涡度方程的全局拟合优度

Yuri Cacchio’
{"title":"$$\\mathbb{T}^2$$上涡度均值涡度方程的全局拟合优度","authors":"Yuri Cacchio’","doi":"10.1007/s00030-023-00898-0","DOIUrl":null,"url":null,"abstract":"<p>We consider the two-dimensional, <span>\\(\\beta \\)</span>-plane, eddy-mean vorticity equations for an incompressible flow, where the zonally averaged flow varies on scales much larger than the perturbation. We prove global existence and uniqueness of the solution to the equations on periodic settings.</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global well-posedness for eddy-mean vorticity equations on $$\\\\mathbb {T}^2$$\",\"authors\":\"Yuri Cacchio’\",\"doi\":\"10.1007/s00030-023-00898-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the two-dimensional, <span>\\\\(\\\\beta \\\\)</span>-plane, eddy-mean vorticity equations for an incompressible flow, where the zonally averaged flow varies on scales much larger than the perturbation. We prove global existence and uniqueness of the solution to the equations on periodic settings.</p>\",\"PeriodicalId\":501665,\"journal\":{\"name\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00030-023-00898-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-023-00898-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了不可压缩流的(\(\beta \)-平面)二维涡均涡度方程,其中分区平均流的变化尺度远大于扰动。我们证明了方程在周期性设置上的全局存在性和唯一性解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global well-posedness for eddy-mean vorticity equations on $$\mathbb {T}^2$$

We consider the two-dimensional, \(\beta \)-plane, eddy-mean vorticity equations for an incompressible flow, where the zonally averaged flow varies on scales much larger than the perturbation. We prove global existence and uniqueness of the solution to the equations on periodic settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信