公度量空间中的切格切割和切格问题

José M. Mazón
{"title":"公度量空间中的切格切割和切格问题","authors":"José M. Mazón","doi":"10.1007/s00030-023-00893-5","DOIUrl":null,"url":null,"abstract":"<p>In this paper we study the Cheeger cut and Cheeger problem in the general framework of metric measure spaces. A central motivation for developing our results has been the desire to unify the assumptions and methods employed in various specific spaces, such as Riemannian manifolds, Heisenberg groups, graphs, etc. We obtain two characterization of the Cheeger constant: a variational one and another one through the eigenvalue of the 1-Laplacian. We obtain a Cheeger inequality along the lines of the classical one for Riemannian manifolds obtained by Cheeger in (In: Gunning RC (ed) Problems in analysis. Princeton University Press, Princeton, pp 195–199, 1970). We also study the Cheeger problem. Through a variational characterization of the Cheeger sets we prove the existence of Cheeger sets and obtain a characterization of the calibrable sets and a version of the Max Flow Min Cut Theorem.</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"78 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Cheeger cut and Cheeger problem in metric measure spaces\",\"authors\":\"José M. Mazón\",\"doi\":\"10.1007/s00030-023-00893-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we study the Cheeger cut and Cheeger problem in the general framework of metric measure spaces. A central motivation for developing our results has been the desire to unify the assumptions and methods employed in various specific spaces, such as Riemannian manifolds, Heisenberg groups, graphs, etc. We obtain two characterization of the Cheeger constant: a variational one and another one through the eigenvalue of the 1-Laplacian. We obtain a Cheeger inequality along the lines of the classical one for Riemannian manifolds obtained by Cheeger in (In: Gunning RC (ed) Problems in analysis. Princeton University Press, Princeton, pp 195–199, 1970). We also study the Cheeger problem. Through a variational characterization of the Cheeger sets we prove the existence of Cheeger sets and obtain a characterization of the calibrable sets and a version of the Max Flow Min Cut Theorem.</p>\",\"PeriodicalId\":501665,\"journal\":{\"name\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"volume\":\"78 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00030-023-00893-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-023-00893-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们将在度量空间的一般框架下研究切格切割和切格问题。发展我们的成果的一个核心动机是希望统一在各种特定空间(如黎曼流形、海森堡群、图等)中使用的假设和方法。我们获得了切格常数的两种表征:一种是变分表征,另一种是通过 1 拉普拉奇的特征值表征。我们根据 Cheeger 在《黎曼流形》(In. Gunning RC (ed) Problems of Riemannian manifolds)一书中获得的黎曼流形经典不等式,得到了一个 Cheeger 不等式:Gunning RC (ed) Problems in analysis.普林斯顿大学出版社,普林斯顿,第 195-199 页,1970 年)。我们还研究了切格问题。通过对切格集的变分表征,我们证明了切格集的存在性,并得到了可校准集的表征和最大流最小切定理的一个版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Cheeger cut and Cheeger problem in metric measure spaces

In this paper we study the Cheeger cut and Cheeger problem in the general framework of metric measure spaces. A central motivation for developing our results has been the desire to unify the assumptions and methods employed in various specific spaces, such as Riemannian manifolds, Heisenberg groups, graphs, etc. We obtain two characterization of the Cheeger constant: a variational one and another one through the eigenvalue of the 1-Laplacian. We obtain a Cheeger inequality along the lines of the classical one for Riemannian manifolds obtained by Cheeger in (In: Gunning RC (ed) Problems in analysis. Princeton University Press, Princeton, pp 195–199, 1970). We also study the Cheeger problem. Through a variational characterization of the Cheeger sets we prove the existence of Cheeger sets and obtain a characterization of the calibrable sets and a version of the Max Flow Min Cut Theorem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信