具有可控波动性的位移单调均值场博弈的定量收敛性

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Joe Jackson, Ludovic Tangpi
{"title":"具有可控波动性的位移单调均值场博弈的定量收敛性","authors":"Joe Jackson, Ludovic Tangpi","doi":"10.1287/moor.2023.0106","DOIUrl":null,"url":null,"abstract":"We study the convergence problem for mean field games with common noise and controlled volatility. We adopt the strategy recently put forth by Laurière and the second author, using the maximum principle to recast the convergence problem as a question of “forward-backward propagation of chaos” (i.e., (conditional) propagation of chaos for systems of particles evolving forward and backward in time). Our main results show that displacement monotonicity can be used to obtain this propagation of chaos, which leads to quantitative convergence results for open-loop Nash equilibria for a class of mean field games. Our results seem to be the first (quantitative or qualitative) that apply to games in which the common noise is controlled. The proofs are relatively simple and rely on a well-known technique for proving wellposedness of forward-backward stochastic differential equations, which is combined with displacement monotonicity in a novel way. To demonstrate the flexibility of the approach, we also use the same arguments to obtain convergence results for a class of infinite horizon discounted mean field games.Funding: J. Jackson is supported by the National Science Foundation [Grant DGE1610403]. L. Tangpi is partially supported by the National Science Foundation [Grants DMS-2005832 and DMS-2143861].","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Quantitative Convergence for Displacement Monotone Mean Field Games with Controlled Volatility\",\"authors\":\"Joe Jackson, Ludovic Tangpi\",\"doi\":\"10.1287/moor.2023.0106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the convergence problem for mean field games with common noise and controlled volatility. We adopt the strategy recently put forth by Laurière and the second author, using the maximum principle to recast the convergence problem as a question of “forward-backward propagation of chaos” (i.e., (conditional) propagation of chaos for systems of particles evolving forward and backward in time). Our main results show that displacement monotonicity can be used to obtain this propagation of chaos, which leads to quantitative convergence results for open-loop Nash equilibria for a class of mean field games. Our results seem to be the first (quantitative or qualitative) that apply to games in which the common noise is controlled. The proofs are relatively simple and rely on a well-known technique for proving wellposedness of forward-backward stochastic differential equations, which is combined with displacement monotonicity in a novel way. To demonstrate the flexibility of the approach, we also use the same arguments to obtain convergence results for a class of infinite horizon discounted mean field games.Funding: J. Jackson is supported by the National Science Foundation [Grant DGE1610403]. L. Tangpi is partially supported by the National Science Foundation [Grants DMS-2005832 and DMS-2143861].\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1287/moor.2023.0106\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1287/moor.2023.0106","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 6

摘要

我们研究具有普通噪声和可控波动的均值场博弈的收敛问题。我们采用 Laurière 和第二位作者最近提出的策略,利用最大原则将收敛问题重塑为 "混乱的前向后向传播 "问题(即粒子系统在时间上向前和向后演化的(有条件的)混乱传播)。我们的主要结果表明,位移单调性可以用来获得这种混沌传播,从而得出一类均值场博弈的开环纳什均衡的定量收敛结果。我们的结果似乎是第一个适用于普通噪声受控博弈的(定量或定性)结果。证明相对简单,依靠的是一种著名的证明前向后向随机微分方程良好假设性的技术,该技术以一种新颖的方式与位移单调性相结合。为了证明这种方法的灵活性,我们还使用相同的论证来获得一类无限视界贴现均值场博弈的收敛结果:J. Jackson 由美国国家科学基金会 [DGE1610403] 资助。L. Tangpi 得到美国国家科学基金会 [DMS-2005832 和 DMS-2143861] 的部分资助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantitative Convergence for Displacement Monotone Mean Field Games with Controlled Volatility
We study the convergence problem for mean field games with common noise and controlled volatility. We adopt the strategy recently put forth by Laurière and the second author, using the maximum principle to recast the convergence problem as a question of “forward-backward propagation of chaos” (i.e., (conditional) propagation of chaos for systems of particles evolving forward and backward in time). Our main results show that displacement monotonicity can be used to obtain this propagation of chaos, which leads to quantitative convergence results for open-loop Nash equilibria for a class of mean field games. Our results seem to be the first (quantitative or qualitative) that apply to games in which the common noise is controlled. The proofs are relatively simple and rely on a well-known technique for proving wellposedness of forward-backward stochastic differential equations, which is combined with displacement monotonicity in a novel way. To demonstrate the flexibility of the approach, we also use the same arguments to obtain convergence results for a class of infinite horizon discounted mean field games.Funding: J. Jackson is supported by the National Science Foundation [Grant DGE1610403]. L. Tangpi is partially supported by the National Science Foundation [Grants DMS-2005832 and DMS-2143861].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信