{"title":"跟踪合同","authors":"CAMERON MOY, MATTHIAS FELLEISEN","doi":"10.1017/s0956796823000096","DOIUrl":null,"url":null,"abstract":"<p>Behavioral software contracts allow programmers to strengthen the obligations and promises that they express with conventional types. They lack expressive power, though, when it comes to invariants that hold across several function calls. Trace contracts narrow this expressiveness gap. A trace contract is a predicate over the sequence of values that flow through function calls and returns. This paper presents a principled design, an implementation, and an evaluation of trace contracts.</p>","PeriodicalId":15874,"journal":{"name":"Journal of Functional Programming","volume":"283 2 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trace contracts\",\"authors\":\"CAMERON MOY, MATTHIAS FELLEISEN\",\"doi\":\"10.1017/s0956796823000096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Behavioral software contracts allow programmers to strengthen the obligations and promises that they express with conventional types. They lack expressive power, though, when it comes to invariants that hold across several function calls. Trace contracts narrow this expressiveness gap. A trace contract is a predicate over the sequence of values that flow through function calls and returns. This paper presents a principled design, an implementation, and an evaluation of trace contracts.</p>\",\"PeriodicalId\":15874,\"journal\":{\"name\":\"Journal of Functional Programming\",\"volume\":\"283 2 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Programming\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/s0956796823000096\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Programming","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s0956796823000096","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Behavioral software contracts allow programmers to strengthen the obligations and promises that they express with conventional types. They lack expressive power, though, when it comes to invariants that hold across several function calls. Trace contracts narrow this expressiveness gap. A trace contract is a predicate over the sequence of values that flow through function calls and returns. This paper presents a principled design, an implementation, and an evaluation of trace contracts.
期刊介绍:
Journal of Functional Programming is the only journal devoted solely to the design, implementation, and application of functional programming languages, spanning the range from mathematical theory to industrial practice. Topics covered include functional languages and extensions, implementation techniques, reasoning and proof, program transformation and synthesis, type systems, type theory, language-based security, memory management, parallelism and applications. The journal is of interest to computer scientists, software engineers, programming language researchers and mathematicians interested in the logical foundations of programming.