{"title":"回到语法:利用语法纠错自动评估 L2 口语水平","authors":"Stefano Bannò , Marco Matassoni","doi":"10.1016/j.specom.2023.103025","DOIUrl":null,"url":null,"abstract":"<div><p>In an interconnected world where English has become the lingua franca of culture, entertainment, business, and academia, the growing demand for learning English as a second language (L2) has led to an increasing interest in automatic approaches for assessing spoken language proficiency. In this regard, mastering grammar is one of the key elements of L2 proficiency.</p><p>In this paper, we illustrate an approach to L2 proficiency assessment and feedback based on grammatical features using only publicly available data for training and a small proprietary dataset for testing. Specifically, we implement it in a cascaded fashion, starting from learners’ utterances, investigating disfluency detection, exploring spoken grammatical error correction (GEC), and finally using grammatical features extracted with the spoken GEC module for proficiency assessment.</p><p>We compare this grading system to a BERT-based grader and find that the two systems have similar performances when using manual transcriptions, but their combinations bring significant improvements to the assessment performance and enhance validity and explainability. Instead, when using automatic transcriptions, the GEC-based grader obtains better results than the BERT-based grader.</p><p>The results obtained are discussed and evaluated with appropriate metrics across the proposed pipeline.</p></div>","PeriodicalId":49485,"journal":{"name":"Speech Communication","volume":"157 ","pages":"Article 103025"},"PeriodicalIF":2.4000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Back to grammar: Using grammatical error correction to automatically assess L2 speaking proficiency\",\"authors\":\"Stefano Bannò , Marco Matassoni\",\"doi\":\"10.1016/j.specom.2023.103025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In an interconnected world where English has become the lingua franca of culture, entertainment, business, and academia, the growing demand for learning English as a second language (L2) has led to an increasing interest in automatic approaches for assessing spoken language proficiency. In this regard, mastering grammar is one of the key elements of L2 proficiency.</p><p>In this paper, we illustrate an approach to L2 proficiency assessment and feedback based on grammatical features using only publicly available data for training and a small proprietary dataset for testing. Specifically, we implement it in a cascaded fashion, starting from learners’ utterances, investigating disfluency detection, exploring spoken grammatical error correction (GEC), and finally using grammatical features extracted with the spoken GEC module for proficiency assessment.</p><p>We compare this grading system to a BERT-based grader and find that the two systems have similar performances when using manual transcriptions, but their combinations bring significant improvements to the assessment performance and enhance validity and explainability. Instead, when using automatic transcriptions, the GEC-based grader obtains better results than the BERT-based grader.</p><p>The results obtained are discussed and evaluated with appropriate metrics across the proposed pipeline.</p></div>\",\"PeriodicalId\":49485,\"journal\":{\"name\":\"Speech Communication\",\"volume\":\"157 \",\"pages\":\"Article 103025\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Speech Communication\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167639323001590\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Speech Communication","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167639323001590","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
Back to grammar: Using grammatical error correction to automatically assess L2 speaking proficiency
In an interconnected world where English has become the lingua franca of culture, entertainment, business, and academia, the growing demand for learning English as a second language (L2) has led to an increasing interest in automatic approaches for assessing spoken language proficiency. In this regard, mastering grammar is one of the key elements of L2 proficiency.
In this paper, we illustrate an approach to L2 proficiency assessment and feedback based on grammatical features using only publicly available data for training and a small proprietary dataset for testing. Specifically, we implement it in a cascaded fashion, starting from learners’ utterances, investigating disfluency detection, exploring spoken grammatical error correction (GEC), and finally using grammatical features extracted with the spoken GEC module for proficiency assessment.
We compare this grading system to a BERT-based grader and find that the two systems have similar performances when using manual transcriptions, but their combinations bring significant improvements to the assessment performance and enhance validity and explainability. Instead, when using automatic transcriptions, the GEC-based grader obtains better results than the BERT-based grader.
The results obtained are discussed and evaluated with appropriate metrics across the proposed pipeline.
期刊介绍:
Speech Communication is an interdisciplinary journal whose primary objective is to fulfil the need for the rapid dissemination and thorough discussion of basic and applied research results.
The journal''s primary objectives are:
• to present a forum for the advancement of human and human-machine speech communication science;
• to stimulate cross-fertilization between different fields of this domain;
• to contribute towards the rapid and wide diffusion of scientifically sound contributions in this domain.