关于一些最大集和最小集

Pub Date : 2023-12-12 DOI:10.1007/s10998-023-00559-w
Jin-Hui Fang, Xue-Qin Cao
{"title":"关于一些最大集和最小集","authors":"Jin-Hui Fang, Xue-Qin Cao","doi":"10.1007/s10998-023-00559-w","DOIUrl":null,"url":null,"abstract":"<p>A set <i>A</i> of positive integers is called 3-free if it contains no 3-term arithmetic progression. Furthermore, such <i>A</i> is called <i>maximal</i> if it is not properly contained in any other 3-free set. In 2006, by confirming a question posed by Erdős et al., Savchev and Chen proved that there exists a maximal 3-free set <span>\\(\\{a_1&lt;a_2&lt;\\cdots&lt;a_n&lt;\\cdots \\}\\)</span> of positive integers with the property that <span>\\(\\lim _{n\\rightarrow \\infty }(a_{n+1}-a_n)=\\infty \\)</span>. In this paper, we generalize their result. On the other hand, a set <i>A</i> of nonnegative integers is called an asymptotic basis of order <i>h</i> if every sufficiently large integer can be represented as a sum of <i>h</i> elements of <i>A</i>. Such <i>A</i> is defined as <i>minimal</i> if no proper subset of <i>A</i> has this property. We also extend a result of Jańczak and Schoen about the minimal asymptotic basis.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On some maximal and minimal sets\",\"authors\":\"Jin-Hui Fang, Xue-Qin Cao\",\"doi\":\"10.1007/s10998-023-00559-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A set <i>A</i> of positive integers is called 3-free if it contains no 3-term arithmetic progression. Furthermore, such <i>A</i> is called <i>maximal</i> if it is not properly contained in any other 3-free set. In 2006, by confirming a question posed by Erdős et al., Savchev and Chen proved that there exists a maximal 3-free set <span>\\\\(\\\\{a_1&lt;a_2&lt;\\\\cdots&lt;a_n&lt;\\\\cdots \\\\}\\\\)</span> of positive integers with the property that <span>\\\\(\\\\lim _{n\\\\rightarrow \\\\infty }(a_{n+1}-a_n)=\\\\infty \\\\)</span>. In this paper, we generalize their result. On the other hand, a set <i>A</i> of nonnegative integers is called an asymptotic basis of order <i>h</i> if every sufficiently large integer can be represented as a sum of <i>h</i> elements of <i>A</i>. Such <i>A</i> is defined as <i>minimal</i> if no proper subset of <i>A</i> has this property. We also extend a result of Jańczak and Schoen about the minimal asymptotic basis.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10998-023-00559-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10998-023-00559-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如果一个正整数集合 A 不包含 3 项算术级数,则称其为无 3 项集合。此外,如果这样的集合 A 不包含在任何其他无 3 项的集合中,则称其为最大集合。2006 年,通过证实厄尔多斯等人提出的问题,萨夫切夫和陈证明了存在一个正整数的最大无 3 项集 \(\{a_1<a_2<\cdots<a_n<\cdots \}\) ,其性质是 \(\lim _{n\rightarrow \infty }(a_{n+1}-a_n)=\infty \)。在本文中,我们将推广他们的结果。另一方面,如果每个足够大的整数都可以表示为 A 的 h 个元素之和,那么非负整数集合 A 就被称为阶 h 的渐近基。我们还扩展了扬扎克和舍恩关于最小渐近基的一个结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On some maximal and minimal sets

A set A of positive integers is called 3-free if it contains no 3-term arithmetic progression. Furthermore, such A is called maximal if it is not properly contained in any other 3-free set. In 2006, by confirming a question posed by Erdős et al., Savchev and Chen proved that there exists a maximal 3-free set \(\{a_1<a_2<\cdots<a_n<\cdots \}\) of positive integers with the property that \(\lim _{n\rightarrow \infty }(a_{n+1}-a_n)=\infty \). In this paper, we generalize their result. On the other hand, a set A of nonnegative integers is called an asymptotic basis of order h if every sufficiently large integer can be represented as a sum of h elements of A. Such A is defined as minimal if no proper subset of A has this property. We also extend a result of Jańczak and Schoen about the minimal asymptotic basis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信