无模型多代理系统的事件触发分布式优化

IF 2.7 3区 工程技术 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Shanshan Zheng, Shuai Liu, Licheng Wang
{"title":"无模型多代理系统的事件触发分布式优化","authors":"Shanshan Zheng, Shuai Liu, Licheng Wang","doi":"10.1631/fitee.2300568","DOIUrl":null,"url":null,"abstract":"<p>In this paper, the distributed optimization problem is investigated for a class of general nonlinear model-free multi-agent systems. The dynamical model of each agent is unknown and only the input/output data are available. A model-free adaptive control method is employed, by which the original unknown nonlinear system is equivalently converted into a dynamic linearized model. An event-triggered consensus scheme is developed to guarantee that the consensus error of the outputs of all agents is convergent. Then, by means of the distributed gradient descent method, a novel event-triggered model-free adaptive distributed optimization algorithm is put forward. Sufficient conditions are established to ensure the consensus and optimality of the addressed system. Finally, simulation results are provided to validate the effectiveness of the proposed approach.</p>","PeriodicalId":12608,"journal":{"name":"Frontiers of Information Technology & Electronic Engineering","volume":"78 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Event-triggered distributed optimization for model-free multi-agent systems\",\"authors\":\"Shanshan Zheng, Shuai Liu, Licheng Wang\",\"doi\":\"10.1631/fitee.2300568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, the distributed optimization problem is investigated for a class of general nonlinear model-free multi-agent systems. The dynamical model of each agent is unknown and only the input/output data are available. A model-free adaptive control method is employed, by which the original unknown nonlinear system is equivalently converted into a dynamic linearized model. An event-triggered consensus scheme is developed to guarantee that the consensus error of the outputs of all agents is convergent. Then, by means of the distributed gradient descent method, a novel event-triggered model-free adaptive distributed optimization algorithm is put forward. Sufficient conditions are established to ensure the consensus and optimality of the addressed system. Finally, simulation results are provided to validate the effectiveness of the proposed approach.</p>\",\"PeriodicalId\":12608,\"journal\":{\"name\":\"Frontiers of Information Technology & Electronic Engineering\",\"volume\":\"78 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Information Technology & Electronic Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1631/fitee.2300568\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Information Technology & Electronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1631/fitee.2300568","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类通用非线性无模型多代理系统的分布式优化问题。每个代理的动态模型都是未知的,只有输入/输出数据可用。研究采用了一种无模型自适应控制方法,将原始的未知非线性系统等效转换为动态线性化模型。开发了一种事件触发共识方案,以保证所有代理的输出共识误差是收敛的。然后,通过分布式梯度下降方法,提出了一种新颖的事件触发无模型自适应分布式优化算法。为确保所处理系统的共识性和最优性,建立了充分的条件。最后,仿真结果验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Event-triggered distributed optimization for model-free multi-agent systems

In this paper, the distributed optimization problem is investigated for a class of general nonlinear model-free multi-agent systems. The dynamical model of each agent is unknown and only the input/output data are available. A model-free adaptive control method is employed, by which the original unknown nonlinear system is equivalently converted into a dynamic linearized model. An event-triggered consensus scheme is developed to guarantee that the consensus error of the outputs of all agents is convergent. Then, by means of the distributed gradient descent method, a novel event-triggered model-free adaptive distributed optimization algorithm is put forward. Sufficient conditions are established to ensure the consensus and optimality of the addressed system. Finally, simulation results are provided to validate the effectiveness of the proposed approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers of Information Technology & Electronic Engineering
Frontiers of Information Technology & Electronic Engineering COMPUTER SCIENCE, INFORMATION SYSTEMSCOMPU-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
6.00
自引率
10.00%
发文量
1372
期刊介绍: Frontiers of Information Technology & Electronic Engineering (ISSN 2095-9184, monthly), formerly known as Journal of Zhejiang University SCIENCE C (Computers & Electronics) (2010-2014), is an international peer-reviewed journal launched by Chinese Academy of Engineering (CAE) and Zhejiang University, co-published by Springer & Zhejiang University Press. FITEE is aimed to publish the latest implementation of applications, principles, and algorithms in the broad area of Electrical and Electronic Engineering, including but not limited to Computer Science, Information Sciences, Control, Automation, Telecommunications. There are different types of articles for your choice, including research articles, review articles, science letters, perspective, new technical notes and methods, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信