Maralice Assis de Oliveira, Rafael Bezerra dos Santos, Ana Cristina Vieira
{"title":"有群分级内卷的代数代数的多项式增长序列","authors":"Maralice Assis de Oliveira, Rafael Bezerra dos Santos, Ana Cristina Vieira","doi":"10.1007/s11856-023-2585-6","DOIUrl":null,"url":null,"abstract":"<p>An algebra graded by a group <i>G</i> and endowed with a graded involution * is called a (<i>G</i>, *)-algebra. Here we consider <i>G</i> a finite abelian group and classify the subvarieties of the varieties of almost polynomial growth generated by finite-dimensional (<i>G</i>, *)-algebras. Also, we present, up to equivalence, the complete list of (<i>G</i>, *)-algebras generating varieties of at most linear growth. Along the way, we give a new characterization of varieties of polynomial growth generated by finite-dimensional (<i>G</i>, *)-algebras by considering the structure of the generating algebra.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polynomial growth of the codimensions sequence of algebras with group graded involution\",\"authors\":\"Maralice Assis de Oliveira, Rafael Bezerra dos Santos, Ana Cristina Vieira\",\"doi\":\"10.1007/s11856-023-2585-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An algebra graded by a group <i>G</i> and endowed with a graded involution * is called a (<i>G</i>, *)-algebra. Here we consider <i>G</i> a finite abelian group and classify the subvarieties of the varieties of almost polynomial growth generated by finite-dimensional (<i>G</i>, *)-algebras. Also, we present, up to equivalence, the complete list of (<i>G</i>, *)-algebras generating varieties of at most linear growth. Along the way, we give a new characterization of varieties of polynomial growth generated by finite-dimensional (<i>G</i>, *)-algebras by considering the structure of the generating algebra.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11856-023-2585-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-023-2585-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
由群 G 分级并赋予分级内卷 * 的代数称为 (G, *)- 代数。在此,我们将 G 视为有限无性群,并对有限维 (G, *) 代数生成的几乎多项式增长的子域进行分类。此外,我们还提出了产生最多线性增长的变种的(G,*)代数的完整列表,直到等价为止。同时,通过考虑生成代数的结构,我们给出了由有限维 (G, *) 代数生成的多项式增长代数的新特征。
Polynomial growth of the codimensions sequence of algebras with group graded involution
An algebra graded by a group G and endowed with a graded involution * is called a (G, *)-algebra. Here we consider G a finite abelian group and classify the subvarieties of the varieties of almost polynomial growth generated by finite-dimensional (G, *)-algebras. Also, we present, up to equivalence, the complete list of (G, *)-algebras generating varieties of at most linear growth. Along the way, we give a new characterization of varieties of polynomial growth generated by finite-dimensional (G, *)-algebras by considering the structure of the generating algebra.