有群分级内卷的代数代数的多项式增长序列

Pub Date : 2023-11-29 DOI:10.1007/s11856-023-2585-6
Maralice Assis de Oliveira, Rafael Bezerra dos Santos, Ana Cristina Vieira
{"title":"有群分级内卷的代数代数的多项式增长序列","authors":"Maralice Assis de Oliveira, Rafael Bezerra dos Santos, Ana Cristina Vieira","doi":"10.1007/s11856-023-2585-6","DOIUrl":null,"url":null,"abstract":"<p>An algebra graded by a group <i>G</i> and endowed with a graded involution * is called a (<i>G</i>, *)-algebra. Here we consider <i>G</i> a finite abelian group and classify the subvarieties of the varieties of almost polynomial growth generated by finite-dimensional (<i>G</i>, *)-algebras. Also, we present, up to equivalence, the complete list of (<i>G</i>, *)-algebras generating varieties of at most linear growth. Along the way, we give a new characterization of varieties of polynomial growth generated by finite-dimensional (<i>G</i>, *)-algebras by considering the structure of the generating algebra.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polynomial growth of the codimensions sequence of algebras with group graded involution\",\"authors\":\"Maralice Assis de Oliveira, Rafael Bezerra dos Santos, Ana Cristina Vieira\",\"doi\":\"10.1007/s11856-023-2585-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An algebra graded by a group <i>G</i> and endowed with a graded involution * is called a (<i>G</i>, *)-algebra. Here we consider <i>G</i> a finite abelian group and classify the subvarieties of the varieties of almost polynomial growth generated by finite-dimensional (<i>G</i>, *)-algebras. Also, we present, up to equivalence, the complete list of (<i>G</i>, *)-algebras generating varieties of at most linear growth. Along the way, we give a new characterization of varieties of polynomial growth generated by finite-dimensional (<i>G</i>, *)-algebras by considering the structure of the generating algebra.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11856-023-2585-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-023-2585-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由群 G 分级并赋予分级内卷 * 的代数称为 (G, *)- 代数。在此,我们将 G 视为有限无性群,并对有限维 (G, *) 代数生成的几乎多项式增长的子域进行分类。此外,我们还提出了产生最多线性增长的变种的(G,*)代数的完整列表,直到等价为止。同时,通过考虑生成代数的结构,我们给出了由有限维 (G, *) 代数生成的多项式增长代数的新特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Polynomial growth of the codimensions sequence of algebras with group graded involution

An algebra graded by a group G and endowed with a graded involution * is called a (G, *)-algebra. Here we consider G a finite abelian group and classify the subvarieties of the varieties of almost polynomial growth generated by finite-dimensional (G, *)-algebras. Also, we present, up to equivalence, the complete list of (G, *)-algebras generating varieties of at most linear growth. Along the way, we give a new characterization of varieties of polynomial growth generated by finite-dimensional (G, *)-algebras by considering the structure of the generating algebra.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信