MBPCA-OS:针对不同测量水平变量的探索性多块方法。应用于研究 SARS-CoV-2 感染和疫苗接种的免疫反应

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Martin Paries, Evelyne Vigneau, Adeline Huneau, Olivier Lantz, Stéphanie Bougeard
{"title":"MBPCA-OS:针对不同测量水平变量的探索性多块方法。应用于研究 SARS-CoV-2 感染和疫苗接种的免疫反应","authors":"Martin Paries, Evelyne Vigneau, Adeline Huneau, Olivier Lantz, Stéphanie Bougeard","doi":"10.1515/ijb-2023-0062","DOIUrl":null,"url":null,"abstract":"Studying a large number of variables measured on the same observations and organized in blocks – denoted multiblock data – is becoming standard in several domains especially in biology. To explore the relationships between all these variables – at the block- and the variable-level – several exploratory multiblock methods were proposed. However, most of them are only designed for numeric variables. In reality, some data sets contain variables of different measurement levels (i.e., numeric, nominal, ordinal). In this article, we focus on exploratory multiblock methods that handle variables at their appropriate measurement level. Multi-Block Principal Component Analysis with Optimal Scaling (MBPCA-OS) is proposed and applied to multiblock data from the CURIE-O-SA French cohort. In this study, variables are of different measurement levels and organized in four blocks. The objective is to study the immune responses according to the SARS-CoV-2 infection and vaccination statuses, the symptoms and the participant’s characteristics.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MBPCA-OS: an exploratory multiblock method for variables of different measurement levels. Application to study the immune response to SARS-CoV-2 infection and vaccination\",\"authors\":\"Martin Paries, Evelyne Vigneau, Adeline Huneau, Olivier Lantz, Stéphanie Bougeard\",\"doi\":\"10.1515/ijb-2023-0062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Studying a large number of variables measured on the same observations and organized in blocks – denoted multiblock data – is becoming standard in several domains especially in biology. To explore the relationships between all these variables – at the block- and the variable-level – several exploratory multiblock methods were proposed. However, most of them are only designed for numeric variables. In reality, some data sets contain variables of different measurement levels (i.e., numeric, nominal, ordinal). In this article, we focus on exploratory multiblock methods that handle variables at their appropriate measurement level. Multi-Block Principal Component Analysis with Optimal Scaling (MBPCA-OS) is proposed and applied to multiblock data from the CURIE-O-SA French cohort. In this study, variables are of different measurement levels and organized in four blocks. The objective is to study the immune responses according to the SARS-CoV-2 infection and vaccination statuses, the symptoms and the participant’s characteristics.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ijb-2023-0062\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2023-0062","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究在相同观测数据上测量的大量变量并将其组织成块(称为多块数据)已成为多个领域,尤其是生物学领域的标准方法。为了探索所有这些变量之间在块和变量层面的关系,人们提出了几种探索性多块方法。然而,这些方法大多只针对数值变量。实际上,有些数据集包含不同测量水平的变量(即数字变量、名义变量、序数变量)。在本文中,我们将重点讨论在适当的测量水平上处理变量的探索性多块方法。我们提出了具有最佳比例的多区块主成分分析法(MBPCA-OS),并将其应用于 CURIE-O-SA 法国队列的多区块数据。在这项研究中,变量具有不同的测量水平,并分为四个区块。目的是根据 SARS-CoV-2 感染和疫苗接种情况、症状和参与者的特征研究免疫反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MBPCA-OS: an exploratory multiblock method for variables of different measurement levels. Application to study the immune response to SARS-CoV-2 infection and vaccination
Studying a large number of variables measured on the same observations and organized in blocks – denoted multiblock data – is becoming standard in several domains especially in biology. To explore the relationships between all these variables – at the block- and the variable-level – several exploratory multiblock methods were proposed. However, most of them are only designed for numeric variables. In reality, some data sets contain variables of different measurement levels (i.e., numeric, nominal, ordinal). In this article, we focus on exploratory multiblock methods that handle variables at their appropriate measurement level. Multi-Block Principal Component Analysis with Optimal Scaling (MBPCA-OS) is proposed and applied to multiblock data from the CURIE-O-SA French cohort. In this study, variables are of different measurement levels and organized in four blocks. The objective is to study the immune responses according to the SARS-CoV-2 infection and vaccination statuses, the symptoms and the participant’s characteristics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信