{"title":"关于 SO5 × GL2 的兰金-塞尔伯格 L 因子","authors":"Yao Cheng","doi":"10.1007/s11856-023-2580-y","DOIUrl":null,"url":null,"abstract":"<p>Let <i>π</i> and <i>τ</i> be irreducible smooth generic representations of SO<sub>5</sub> and GL<sub>2</sub> respectively over a non-archimedean local field. We show that the <i>L</i>- and <i>ε</i>-factors attached to <i>π</i>×<i>π</i> defined by the Rankin–Selberg integrals and the associated Weil–Deligne representation coincide. The proof is obtained by explicating the relation between the Rankin–Selberg integrals for SO<sub>5</sub> × GL<sub>2</sub> and Novodvorsky’s local integrals for GSp<sub>4</sub>× GL<sub>2</sub>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Rankin–Selberg L-factors for SO5 × GL2\",\"authors\":\"Yao Cheng\",\"doi\":\"10.1007/s11856-023-2580-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>π</i> and <i>τ</i> be irreducible smooth generic representations of SO<sub>5</sub> and GL<sub>2</sub> respectively over a non-archimedean local field. We show that the <i>L</i>- and <i>ε</i>-factors attached to <i>π</i>×<i>π</i> defined by the Rankin–Selberg integrals and the associated Weil–Deligne representation coincide. The proof is obtained by explicating the relation between the Rankin–Selberg integrals for SO<sub>5</sub> × GL<sub>2</sub> and Novodvorsky’s local integrals for GSp<sub>4</sub>× GL<sub>2</sub>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11856-023-2580-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-023-2580-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Let π and τ be irreducible smooth generic representations of SO5 and GL2 respectively over a non-archimedean local field. We show that the L- and ε-factors attached to π×π defined by the Rankin–Selberg integrals and the associated Weil–Deligne representation coincide. The proof is obtained by explicating the relation between the Rankin–Selberg integrals for SO5 × GL2 and Novodvorsky’s local integrals for GSp4× GL2.