关于 SO5 × GL2 的兰金-塞尔伯格 L 因子

Pub Date : 2023-11-29 DOI:10.1007/s11856-023-2580-y
Yao Cheng
{"title":"关于 SO5 × GL2 的兰金-塞尔伯格 L 因子","authors":"Yao Cheng","doi":"10.1007/s11856-023-2580-y","DOIUrl":null,"url":null,"abstract":"<p>Let <i>π</i> and <i>τ</i> be irreducible smooth generic representations of SO<sub>5</sub> and GL<sub>2</sub> respectively over a non-archimedean local field. We show that the <i>L</i>- and <i>ε</i>-factors attached to <i>π</i>×<i>π</i> defined by the Rankin–Selberg integrals and the associated Weil–Deligne representation coincide. The proof is obtained by explicating the relation between the Rankin–Selberg integrals for SO<sub>5</sub> × GL<sub>2</sub> and Novodvorsky’s local integrals for GSp<sub>4</sub>× GL<sub>2</sub>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Rankin–Selberg L-factors for SO5 × GL2\",\"authors\":\"Yao Cheng\",\"doi\":\"10.1007/s11856-023-2580-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>π</i> and <i>τ</i> be irreducible smooth generic representations of SO<sub>5</sub> and GL<sub>2</sub> respectively over a non-archimedean local field. We show that the <i>L</i>- and <i>ε</i>-factors attached to <i>π</i>×<i>π</i> defined by the Rankin–Selberg integrals and the associated Weil–Deligne representation coincide. The proof is obtained by explicating the relation between the Rankin–Selberg integrals for SO<sub>5</sub> × GL<sub>2</sub> and Novodvorsky’s local integrals for GSp<sub>4</sub>× GL<sub>2</sub>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11856-023-2580-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-023-2580-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

假设π和τ分别是非拱顶局部域上 SO5 和 GL2 的不可还原光滑通称表示。我们证明,由 Rankin-Selberg 积分定义的附加于 π×π 的 L 因子和 ε 因子与相关的 Weil-Deligne 表示重合。通过解释 SO5 × GL2 的兰金-塞尔伯格积分与 GSp4× GL2 的诺沃德沃斯基局部积分之间的关系,可以得到证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the Rankin–Selberg L-factors for SO5 × GL2

Let π and τ be irreducible smooth generic representations of SO5 and GL2 respectively over a non-archimedean local field. We show that the L- and ε-factors attached to π×π defined by the Rankin–Selberg integrals and the associated Weil–Deligne representation coincide. The proof is obtained by explicating the relation between the Rankin–Selberg integrals for SO5 × GL2 and Novodvorsky’s local integrals for GSp4× GL2.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信