关于质点限制理论的说明

IF 0.8 2区 数学 Q2 MATHEMATICS
Olivier Ramaré
{"title":"关于质点限制理论的说明","authors":"Olivier Ramaré","doi":"10.1007/s11856-023-2586-5","DOIUrl":null,"url":null,"abstract":"<p>We study the mean <span>\\(\\sum\\nolimits_{x \\in {\\cal X}} {|\\sum\\nolimits_{p \\le N} {{u_p}e(xp){|^\\ell}}} \\)</span> when ℓ covers the full range [2, ∞) and <span>\\({\\cal X} \\subset \\mathbb{R}/\\mathbb{Z}\\)</span> is a well-spaced set, providing a smooth transition from the case ℓ = 2 to the case ℓ &gt; 2 and improving on the results of J. Bourgain and of B. Green and T. Tao. A uniform Hardy–Littlewood property for the set of primes is established as well as a sharp upper bound for <span>\\(\\sum\\nolimits_{x \\in {\\cal X}} {|\\sum\\nolimits_{p \\le N} {{u_p}e(xp){|^\\ell}}}\\)</span> when <span>\\({\\cal X}\\)</span> is small. These results are extended to primes in any interval in a last section, provided the primes are numerous enough therein.</p>","PeriodicalId":14661,"journal":{"name":"Israel Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Notes on restriction theory in the primes\",\"authors\":\"Olivier Ramaré\",\"doi\":\"10.1007/s11856-023-2586-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the mean <span>\\\\(\\\\sum\\\\nolimits_{x \\\\in {\\\\cal X}} {|\\\\sum\\\\nolimits_{p \\\\le N} {{u_p}e(xp){|^\\\\ell}}} \\\\)</span> when ℓ covers the full range [2, ∞) and <span>\\\\({\\\\cal X} \\\\subset \\\\mathbb{R}/\\\\mathbb{Z}\\\\)</span> is a well-spaced set, providing a smooth transition from the case ℓ = 2 to the case ℓ &gt; 2 and improving on the results of J. Bourgain and of B. Green and T. Tao. A uniform Hardy–Littlewood property for the set of primes is established as well as a sharp upper bound for <span>\\\\(\\\\sum\\\\nolimits_{x \\\\in {\\\\cal X}} {|\\\\sum\\\\nolimits_{p \\\\le N} {{u_p}e(xp){|^\\\\ell}}}\\\\)</span> when <span>\\\\({\\\\cal X}\\\\)</span> is small. These results are extended to primes in any interval in a last section, provided the primes are numerous enough therein.</p>\",\"PeriodicalId\":14661,\"journal\":{\"name\":\"Israel Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Israel Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11856-023-2586-5\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-023-2586-5","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究平均值({|^\sum\nolimits_{x \in {\cal X}}{{sum\nolimits_{p \le N} {{u_p}e(xp){|^\ell}}})\当 ℓ 覆盖整个范围 [2, ∞) 且 \({\cal X} \subset \mathbb{R}/\mathbb{Z}\) 是一个间隔良好的集合时,提供了从ℓ = 2 到 ℓ > 2 的平滑过渡,并改进了 J. Bourgain 以及 B. Green 和 T. Tao 的结果。为素数集建立了一个统一的哈代-利特尔伍德性质,并为\(\sum\nolimits_{x \in {\cal X}} 建立了一个尖锐的上界。当 \({\cal X}\) 很小时 {|\sum\nolimits_{p \le N} {{u_p}e(xp){|^\ell}}}\) 的尖锐上界。这些结果将在最后一节中扩展到任何区间中的素数,前提是其中的素数足够多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Notes on restriction theory in the primes

We study the mean \(\sum\nolimits_{x \in {\cal X}} {|\sum\nolimits_{p \le N} {{u_p}e(xp){|^\ell}}} \) when ℓ covers the full range [2, ∞) and \({\cal X} \subset \mathbb{R}/\mathbb{Z}\) is a well-spaced set, providing a smooth transition from the case ℓ = 2 to the case ℓ > 2 and improving on the results of J. Bourgain and of B. Green and T. Tao. A uniform Hardy–Littlewood property for the set of primes is established as well as a sharp upper bound for \(\sum\nolimits_{x \in {\cal X}} {|\sum\nolimits_{p \le N} {{u_p}e(xp){|^\ell}}}\) when \({\cal X}\) is small. These results are extended to primes in any interval in a last section, provided the primes are numerous enough therein.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
90
审稿时长
6 months
期刊介绍: The Israel Journal of Mathematics is an international journal publishing high-quality original research papers in a wide spectrum of pure and applied mathematics. The prestigious interdisciplinary editorial board reflects the diversity of subjects covered in this journal, including set theory, model theory, algebra, group theory, number theory, analysis, functional analysis, ergodic theory, algebraic topology, geometry, combinatorics, theoretical computer science, mathematical physics, and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信