{"title":"关于质点限制理论的说明","authors":"Olivier Ramaré","doi":"10.1007/s11856-023-2586-5","DOIUrl":null,"url":null,"abstract":"<p>We study the mean <span>\\(\\sum\\nolimits_{x \\in {\\cal X}} {|\\sum\\nolimits_{p \\le N} {{u_p}e(xp){|^\\ell}}} \\)</span> when ℓ covers the full range [2, ∞) and <span>\\({\\cal X} \\subset \\mathbb{R}/\\mathbb{Z}\\)</span> is a well-spaced set, providing a smooth transition from the case ℓ = 2 to the case ℓ > 2 and improving on the results of J. Bourgain and of B. Green and T. Tao. A uniform Hardy–Littlewood property for the set of primes is established as well as a sharp upper bound for <span>\\(\\sum\\nolimits_{x \\in {\\cal X}} {|\\sum\\nolimits_{p \\le N} {{u_p}e(xp){|^\\ell}}}\\)</span> when <span>\\({\\cal X}\\)</span> is small. These results are extended to primes in any interval in a last section, provided the primes are numerous enough therein.</p>","PeriodicalId":14661,"journal":{"name":"Israel Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Notes on restriction theory in the primes\",\"authors\":\"Olivier Ramaré\",\"doi\":\"10.1007/s11856-023-2586-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the mean <span>\\\\(\\\\sum\\\\nolimits_{x \\\\in {\\\\cal X}} {|\\\\sum\\\\nolimits_{p \\\\le N} {{u_p}e(xp){|^\\\\ell}}} \\\\)</span> when ℓ covers the full range [2, ∞) and <span>\\\\({\\\\cal X} \\\\subset \\\\mathbb{R}/\\\\mathbb{Z}\\\\)</span> is a well-spaced set, providing a smooth transition from the case ℓ = 2 to the case ℓ > 2 and improving on the results of J. Bourgain and of B. Green and T. Tao. A uniform Hardy–Littlewood property for the set of primes is established as well as a sharp upper bound for <span>\\\\(\\\\sum\\\\nolimits_{x \\\\in {\\\\cal X}} {|\\\\sum\\\\nolimits_{p \\\\le N} {{u_p}e(xp){|^\\\\ell}}}\\\\)</span> when <span>\\\\({\\\\cal X}\\\\)</span> is small. These results are extended to primes in any interval in a last section, provided the primes are numerous enough therein.</p>\",\"PeriodicalId\":14661,\"journal\":{\"name\":\"Israel Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Israel Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11856-023-2586-5\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-023-2586-5","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们研究平均值({|^\sum\nolimits_{x \in {\cal X}}{{sum\nolimits_{p \le N} {{u_p}e(xp){|^\ell}}})\当 ℓ 覆盖整个范围 [2, ∞) 且 \({\cal X} \subset \mathbb{R}/\mathbb{Z}\) 是一个间隔良好的集合时,提供了从ℓ = 2 到 ℓ > 2 的平滑过渡,并改进了 J. Bourgain 以及 B. Green 和 T. Tao 的结果。为素数集建立了一个统一的哈代-利特尔伍德性质,并为\(\sum\nolimits_{x \in {\cal X}} 建立了一个尖锐的上界。当 \({\cal X}\) 很小时 {|\sum\nolimits_{p \le N} {{u_p}e(xp){|^\ell}}}\) 的尖锐上界。这些结果将在最后一节中扩展到任何区间中的素数,前提是其中的素数足够多。
We study the mean \(\sum\nolimits_{x \in {\cal X}} {|\sum\nolimits_{p \le N} {{u_p}e(xp){|^\ell}}} \) when ℓ covers the full range [2, ∞) and \({\cal X} \subset \mathbb{R}/\mathbb{Z}\) is a well-spaced set, providing a smooth transition from the case ℓ = 2 to the case ℓ > 2 and improving on the results of J. Bourgain and of B. Green and T. Tao. A uniform Hardy–Littlewood property for the set of primes is established as well as a sharp upper bound for \(\sum\nolimits_{x \in {\cal X}} {|\sum\nolimits_{p \le N} {{u_p}e(xp){|^\ell}}}\) when \({\cal X}\) is small. These results are extended to primes in any interval in a last section, provided the primes are numerous enough therein.
期刊介绍:
The Israel Journal of Mathematics is an international journal publishing high-quality original research papers in a wide spectrum of pure and applied mathematics. The prestigious interdisciplinary editorial board reflects the diversity of subjects covered in this journal, including set theory, model theory, algebra, group theory, number theory, analysis, functional analysis, ergodic theory, algebraic topology, geometry, combinatorics, theoretical computer science, mathematical physics, and applied mathematics.