Natalie Isaksson, Beth E Scott, Georgina L Hunt, Ella Benninghaus, Morgane Declerck, Kate Gormley, Caitlin Harris, Sandra Sjöstrand, Neda I Trifonova, James J Waggitt, Juliane U Wihsgott, Charlotte Williams, Arianna Zampollo, Benjamin J Williamson
{"title":"了解陆架海近海风电场对整个生态系统影响的范例","authors":"Natalie Isaksson, Beth E Scott, Georgina L Hunt, Ella Benninghaus, Morgane Declerck, Kate Gormley, Caitlin Harris, Sandra Sjöstrand, Neda I Trifonova, James J Waggitt, Juliane U Wihsgott, Charlotte Williams, Arianna Zampollo, Benjamin J Williamson","doi":"10.1093/icesjms/fsad194","DOIUrl":null,"url":null,"abstract":"With the rapid expansion of offshore windfarms (OWFs) globally, there is an urgent need to assess and predict effects on marine species, habitats, and ecosystem functioning. Doing so at shelf-wide scale while simultaneously accounting for the concurrent influence of climate change will require dynamic, multitrophic, multiscalar, ecosystem-centric approaches. However, as such studies and the study system itself (shelf seas) are complex, we propose to structure future environmental research according to the investigative cycle framework. This will allow the formulation and testing of specific hypotheses built on ecological theory, thereby streamlining the process, and allowing adaptability in the face of technological advancements (e.g. floating offshore wind) and shifting socio-economic and political climates. We outline a strategy by which to accelerate our understanding of environmental effects of OWF development on shelf seas, which is illustrated throughout by a North Sea case study. Priorities for future studies include ascertaining the extent to which OWFs may change levels of primary production; whether wind energy extraction will have knock-on effects on biophysical ecosystem drivers; whether pelagic fishes mediate changes in top predator distributions over space and time; and how any effects observed at localized levels will scale and interact with climate change and fisheries displacement effects.","PeriodicalId":51072,"journal":{"name":"ICES Journal of Marine Science","volume":"1 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A paradigm for understanding whole ecosystem effects of offshore wind farms in shelf seas\",\"authors\":\"Natalie Isaksson, Beth E Scott, Georgina L Hunt, Ella Benninghaus, Morgane Declerck, Kate Gormley, Caitlin Harris, Sandra Sjöstrand, Neda I Trifonova, James J Waggitt, Juliane U Wihsgott, Charlotte Williams, Arianna Zampollo, Benjamin J Williamson\",\"doi\":\"10.1093/icesjms/fsad194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid expansion of offshore windfarms (OWFs) globally, there is an urgent need to assess and predict effects on marine species, habitats, and ecosystem functioning. Doing so at shelf-wide scale while simultaneously accounting for the concurrent influence of climate change will require dynamic, multitrophic, multiscalar, ecosystem-centric approaches. However, as such studies and the study system itself (shelf seas) are complex, we propose to structure future environmental research according to the investigative cycle framework. This will allow the formulation and testing of specific hypotheses built on ecological theory, thereby streamlining the process, and allowing adaptability in the face of technological advancements (e.g. floating offshore wind) and shifting socio-economic and political climates. We outline a strategy by which to accelerate our understanding of environmental effects of OWF development on shelf seas, which is illustrated throughout by a North Sea case study. Priorities for future studies include ascertaining the extent to which OWFs may change levels of primary production; whether wind energy extraction will have knock-on effects on biophysical ecosystem drivers; whether pelagic fishes mediate changes in top predator distributions over space and time; and how any effects observed at localized levels will scale and interact with climate change and fisheries displacement effects.\",\"PeriodicalId\":51072,\"journal\":{\"name\":\"ICES Journal of Marine Science\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICES Journal of Marine Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1093/icesjms/fsad194\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICES Journal of Marine Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/icesjms/fsad194","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
A paradigm for understanding whole ecosystem effects of offshore wind farms in shelf seas
With the rapid expansion of offshore windfarms (OWFs) globally, there is an urgent need to assess and predict effects on marine species, habitats, and ecosystem functioning. Doing so at shelf-wide scale while simultaneously accounting for the concurrent influence of climate change will require dynamic, multitrophic, multiscalar, ecosystem-centric approaches. However, as such studies and the study system itself (shelf seas) are complex, we propose to structure future environmental research according to the investigative cycle framework. This will allow the formulation and testing of specific hypotheses built on ecological theory, thereby streamlining the process, and allowing adaptability in the face of technological advancements (e.g. floating offshore wind) and shifting socio-economic and political climates. We outline a strategy by which to accelerate our understanding of environmental effects of OWF development on shelf seas, which is illustrated throughout by a North Sea case study. Priorities for future studies include ascertaining the extent to which OWFs may change levels of primary production; whether wind energy extraction will have knock-on effects on biophysical ecosystem drivers; whether pelagic fishes mediate changes in top predator distributions over space and time; and how any effects observed at localized levels will scale and interact with climate change and fisheries displacement effects.
期刊介绍:
The ICES Journal of Marine Science publishes original articles, opinion essays (“Food for Thought”), visions for the future (“Quo Vadimus”), and critical reviews that contribute to our scientific understanding of marine systems and the impact of human activities on them. The Journal also serves as a foundation for scientific advice across the broad spectrum of management and conservation issues related to the marine environment. Oceanography (e.g. productivity-determining processes), marine habitats, living resources, and related topics constitute the key elements of papers considered for publication. This includes economic, social, and public administration studies to the extent that they are directly related to management of the seas and are of general interest to marine scientists. Integrated studies that bridge gaps between traditional disciplines are particularly welcome.