{"title":"轨道配置空间和一对 $$(\\prod\\nolimits_1^n {M,{F_n}} 的同调群(M))$$ 的 M 要么是 $${\\mathbb{S}^2}$ 要么是 ℝP2","authors":"Daciberg Lima Gonçalves, John Guaschi","doi":"10.1007/s11856-023-2576-7","DOIUrl":null,"url":null,"abstract":"<p>Let <i>n</i> ≥ 1, and let <span>\\({\\iota _n}:{F_n}(M) \\to \\prod\\nolimits_1^n M \\)</span> be the natural inclusion of the <i>n</i><sup>th</sup> configuration space of <i>M</i> in the <i>n</i>-fold Cartesian product of <i>M</i> with itself. In this paper, we study the map <i>ι</i><sub><i>n</i></sub>, the homotopy fibre <i>I</i><sub><i>n</i></sub> of <i>ι</i><sub><i>n</i></sub> and its homotopy groups, and the induced homomorphisms (<i>ι</i><sub><i>n</i></sub>)<sub><i>#k</i></sub> on the <i>k</i><sup>th</sup> homotopy groups of <i>F</i><sub><i>n</i></sub>(<i>M</i>) and <span>\\(\\prod\\nolimits_1^n M \\)</span> for all <i>k</i> ≥ 1, where <i>M</i> is the 2-sphere <span>\\({\\mathbb{S}^2}\\)</span> or the real projective plane ℝ<i>P</i><sup>2</sup>.It is well known that the group π<sub><i>k</i></sub>(<i>I</i><sub><i>n</i></sub>) is the homotopy group <span>\\({\\pi _{k + 1}}(\\prod\\nolimits_1^n {M,{F_n}} (M))\\)</span> for all <i>k</i> ≥ 0. If <i>k</i> ≥ 2, we show that the homomorphism (<i>ι</i><sub><i>n</i></sub><sup>)</sup><sub><i>#k</i></sub> is injective and diagonal, with the exception of the case <i>n</i> = <i>k</i> = 2 and <span>\\(M = {\\mathbb{S}^2}\\)</span>, where it is anti-diagonal. We then show that <i>I</i><sub><i>n</i></sub> has the homotopy type of <span>\\(K({R_{n - 1}},1) \\times \\Omega (\\prod\\nolimits_1^{n - 1} {{\\mathbb{S}^2}} )\\)</span>, where <i>R</i><sub><i>n</i>−1</sub> is the (<i>n</i> − 1)<sup>th</sup> Artin pure braid group if <span>\\(M = {\\mathbb{S}^2}\\)</span>, and is the fundamental group <i>G</i><sub><i>n</i>−1</sub> of the (<i>n</i>−1)<sup>th</sup> orbit configuration space of the open cylinder <span>\\({\\mathbb{S}^2}\\backslash \\{ {\\widetilde z_0}, - {\\widetilde z_0}\\} \\)</span> with respect to the action of the antipodal map of <span>\\({\\mathbb{S}^2}\\)</span> if <i>M</i> = ℝ<i>P</i><sup>2</sup>, where <span>\\({\\widetilde z_0} \\in {\\mathbb{S}^2}\\)</span>. This enables us to describe the long exact sequence in homotopy of the homotopy fibration <span>\\({I_n} \\to {F_n}(M)\\buildrel {{\\iota _n}} \\over\\longrightarrow \\prod\\nolimits_1^n M \\)</span> in geometric terms, and notably the image of the boundary homomorphism <span>\\({\\pi _{k + 1}}(\\prod\\nolimits_1^n M ) \\to {\\pi _k}({I_n})\\)</span>. From this, if <span>\\(M = {\\mathbb{S}^2}\\)</span> and <i>n</i> ≥ 3 (resp. <i>M</i> = ℝ<i>P</i><sup>2</sup> and <i>n</i> ≥ 2), we show that Ker((<i>ι</i><sub><i>n</i></sub>)<sub>#1</sub> ) is isomorphic to the quotient of <i>R</i><sub><i>n</i>−1</sub> by the square of its centre, as well as to an iterated semi-direct product of free groups with the subgroup of order 2 generated by the centre of <i>P</i><sub><i>n</i></sub> (<i>M</i>) that is reminiscent of the combing operation for the Artin pure braid groups, as well as decompositions obtained in [GG5].</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Orbit configuration spaces and the homotopy groups of the pair $$(\\\\prod\\\\nolimits_1^n {M,{F_n}} (M))$$ for M either $${\\\\mathbb{S}^2}$$ or ℝP2\",\"authors\":\"Daciberg Lima Gonçalves, John Guaschi\",\"doi\":\"10.1007/s11856-023-2576-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>n</i> ≥ 1, and let <span>\\\\({\\\\iota _n}:{F_n}(M) \\\\to \\\\prod\\\\nolimits_1^n M \\\\)</span> be the natural inclusion of the <i>n</i><sup>th</sup> configuration space of <i>M</i> in the <i>n</i>-fold Cartesian product of <i>M</i> with itself. In this paper, we study the map <i>ι</i><sub><i>n</i></sub>, the homotopy fibre <i>I</i><sub><i>n</i></sub> of <i>ι</i><sub><i>n</i></sub> and its homotopy groups, and the induced homomorphisms (<i>ι</i><sub><i>n</i></sub>)<sub><i>#k</i></sub> on the <i>k</i><sup>th</sup> homotopy groups of <i>F</i><sub><i>n</i></sub>(<i>M</i>) and <span>\\\\(\\\\prod\\\\nolimits_1^n M \\\\)</span> for all <i>k</i> ≥ 1, where <i>M</i> is the 2-sphere <span>\\\\({\\\\mathbb{S}^2}\\\\)</span> or the real projective plane ℝ<i>P</i><sup>2</sup>.It is well known that the group π<sub><i>k</i></sub>(<i>I</i><sub><i>n</i></sub>) is the homotopy group <span>\\\\({\\\\pi _{k + 1}}(\\\\prod\\\\nolimits_1^n {M,{F_n}} (M))\\\\)</span> for all <i>k</i> ≥ 0. If <i>k</i> ≥ 2, we show that the homomorphism (<i>ι</i><sub><i>n</i></sub><sup>)</sup><sub><i>#k</i></sub> is injective and diagonal, with the exception of the case <i>n</i> = <i>k</i> = 2 and <span>\\\\(M = {\\\\mathbb{S}^2}\\\\)</span>, where it is anti-diagonal. We then show that <i>I</i><sub><i>n</i></sub> has the homotopy type of <span>\\\\(K({R_{n - 1}},1) \\\\times \\\\Omega (\\\\prod\\\\nolimits_1^{n - 1} {{\\\\mathbb{S}^2}} )\\\\)</span>, where <i>R</i><sub><i>n</i>−1</sub> is the (<i>n</i> − 1)<sup>th</sup> Artin pure braid group if <span>\\\\(M = {\\\\mathbb{S}^2}\\\\)</span>, and is the fundamental group <i>G</i><sub><i>n</i>−1</sub> of the (<i>n</i>−1)<sup>th</sup> orbit configuration space of the open cylinder <span>\\\\({\\\\mathbb{S}^2}\\\\backslash \\\\{ {\\\\widetilde z_0}, - {\\\\widetilde z_0}\\\\} \\\\)</span> with respect to the action of the antipodal map of <span>\\\\({\\\\mathbb{S}^2}\\\\)</span> if <i>M</i> = ℝ<i>P</i><sup>2</sup>, where <span>\\\\({\\\\widetilde z_0} \\\\in {\\\\mathbb{S}^2}\\\\)</span>. This enables us to describe the long exact sequence in homotopy of the homotopy fibration <span>\\\\({I_n} \\\\to {F_n}(M)\\\\buildrel {{\\\\iota _n}} \\\\over\\\\longrightarrow \\\\prod\\\\nolimits_1^n M \\\\)</span> in geometric terms, and notably the image of the boundary homomorphism <span>\\\\({\\\\pi _{k + 1}}(\\\\prod\\\\nolimits_1^n M ) \\\\to {\\\\pi _k}({I_n})\\\\)</span>. From this, if <span>\\\\(M = {\\\\mathbb{S}^2}\\\\)</span> and <i>n</i> ≥ 3 (resp. <i>M</i> = ℝ<i>P</i><sup>2</sup> and <i>n</i> ≥ 2), we show that Ker((<i>ι</i><sub><i>n</i></sub>)<sub>#1</sub> ) is isomorphic to the quotient of <i>R</i><sub><i>n</i>−1</sub> by the square of its centre, as well as to an iterated semi-direct product of free groups with the subgroup of order 2 generated by the centre of <i>P</i><sub><i>n</i></sub> (<i>M</i>) that is reminiscent of the combing operation for the Artin pure braid groups, as well as decompositions obtained in [GG5].</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11856-023-2576-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-023-2576-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
让 n ≥ 1,并且让 \({\iota _n}:{F_n}(M) \to \prod\nolimits_1^n M \)是 M 的第 n 个配置空间在 M 与自身的 n 折笛卡尔积中的自然包含。本文将研究映射 ιn、ιn 的同调纤维 In 及其同调群、Fn(M)和 \(\prod\nolimits_1^n M \) 的第 k 个同调群上的诱导同构 (ιn)#k ,其中 M 是 2 球 \({\mathbb{S}^2}\) 或实投影面 ℝP2。众所周知,πk(In)群是同调群 \({\pi _{k + 1}}(\prod\nolimits_1^n {M,{F_n}})\)(M))\) 对于所有 k ≥ 0。如果 k ≥ 2,我们证明同态 (ιn)#k 是注入和对角的,除了 n = k = 2 和 \(M={\mathbb{S}^2}/),在这种情况下它是反对角的。然后我们证明 In 的同调类型为 \(K({R_{n - 1}},1) \times \Omega (\prod\nolimits_1^{n - 1} {{\mathbb{S}^2}} )\), 其中如果 \(M = {\mathbb{S}^2}\), Rn-1 是 (n - 1)th Artin 纯辫子群、是开圆柱体(n-1)轨道配置空间的基群 Gn-1 ({\mathbb{S}^2}\backslash \{ {\widetilde z_0}、- 如果 M = ℝP2,那么\({\widetilde z_0}\in {\mathbb{S}^2}) 的反角映射的作用与\({\mathbb{S}^2}\) 的反角映射的作用有关。这使我们能够描述同构纤度 \({I_n}\到{F_n}\的同构长精确序列。\to {F_n}(M)buildrel {{iota _n}\用几何术语来说就是边界同态的映像({\pi _{k + 1}}(\prod\nolimits_1^n M ) \to {\pi _k}({I_n})\).由此可见,如果 \(M = {\mathbb{S}^2}\) 并且 n ≥ 3 (respect.M = ℝP2,且 n ≥ 2),我们会证明 Ker((ιn)#1 ) 与 Rn-1 的商同构,它的中心是 Rn-1 的平方,同时也是自由群与 Pn (M) 的中心所产生的阶 2 子群的迭代半直接乘积,这让人想起阿尔丁纯辫群的梳理操作,以及在 [GG5] 中得到的分解。
Orbit configuration spaces and the homotopy groups of the pair $$(\prod\nolimits_1^n {M,{F_n}} (M))$$ for M either $${\mathbb{S}^2}$$ or ℝP2
Let n ≥ 1, and let \({\iota _n}:{F_n}(M) \to \prod\nolimits_1^n M \) be the natural inclusion of the nth configuration space of M in the n-fold Cartesian product of M with itself. In this paper, we study the map ιn, the homotopy fibre In of ιn and its homotopy groups, and the induced homomorphisms (ιn)#k on the kth homotopy groups of Fn(M) and \(\prod\nolimits_1^n M \) for all k ≥ 1, where M is the 2-sphere \({\mathbb{S}^2}\) or the real projective plane ℝP2.It is well known that the group πk(In) is the homotopy group \({\pi _{k + 1}}(\prod\nolimits_1^n {M,{F_n}} (M))\) for all k ≥ 0. If k ≥ 2, we show that the homomorphism (ιn)#k is injective and diagonal, with the exception of the case n = k = 2 and \(M = {\mathbb{S}^2}\), where it is anti-diagonal. We then show that In has the homotopy type of \(K({R_{n - 1}},1) \times \Omega (\prod\nolimits_1^{n - 1} {{\mathbb{S}^2}} )\), where Rn−1 is the (n − 1)th Artin pure braid group if \(M = {\mathbb{S}^2}\), and is the fundamental group Gn−1 of the (n−1)th orbit configuration space of the open cylinder \({\mathbb{S}^2}\backslash \{ {\widetilde z_0}, - {\widetilde z_0}\} \) with respect to the action of the antipodal map of \({\mathbb{S}^2}\) if M = ℝP2, where \({\widetilde z_0} \in {\mathbb{S}^2}\). This enables us to describe the long exact sequence in homotopy of the homotopy fibration \({I_n} \to {F_n}(M)\buildrel {{\iota _n}} \over\longrightarrow \prod\nolimits_1^n M \) in geometric terms, and notably the image of the boundary homomorphism \({\pi _{k + 1}}(\prod\nolimits_1^n M ) \to {\pi _k}({I_n})\). From this, if \(M = {\mathbb{S}^2}\) and n ≥ 3 (resp. M = ℝP2 and n ≥ 2), we show that Ker((ιn)#1 ) is isomorphic to the quotient of Rn−1 by the square of its centre, as well as to an iterated semi-direct product of free groups with the subgroup of order 2 generated by the centre of Pn (M) that is reminiscent of the combing operation for the Artin pure braid groups, as well as decompositions obtained in [GG5].