{"title":"相对双曲形似特殊群的无限完形","authors":"Pavel Zalesskii","doi":"10.1007/s11856-023-2584-7","DOIUrl":null,"url":null,"abstract":"<p>We give a characterization of toral relatively hyperbolic virtually special groups in terms of the profinite completion. We also prove a Tits alternative for subgroups of the profinite completion <i>Ĝ</i> of a relatively hyperbolic virtually compact special group <i>G</i> and completely describe finitely generated pro-<i>p</i> subgroups of <i>Ĝ</i>. This applies to the profinite completion of the fundamental group of a hyperbolic arithmetic manifold. We deduce that all finitely generated pro-<i>p</i> subgroups of the congruence kernel of a standard arithmetic lattice of <i>SO</i>(<i>n</i>, 1) are free pro-<i>p</i>.</p>","PeriodicalId":14661,"journal":{"name":"Israel Journal of Mathematics","volume":"92 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The profinite completion of relatively hyperbolic virtually special groups\",\"authors\":\"Pavel Zalesskii\",\"doi\":\"10.1007/s11856-023-2584-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We give a characterization of toral relatively hyperbolic virtually special groups in terms of the profinite completion. We also prove a Tits alternative for subgroups of the profinite completion <i>Ĝ</i> of a relatively hyperbolic virtually compact special group <i>G</i> and completely describe finitely generated pro-<i>p</i> subgroups of <i>Ĝ</i>. This applies to the profinite completion of the fundamental group of a hyperbolic arithmetic manifold. We deduce that all finitely generated pro-<i>p</i> subgroups of the congruence kernel of a standard arithmetic lattice of <i>SO</i>(<i>n</i>, 1) are free pro-<i>p</i>.</p>\",\"PeriodicalId\":14661,\"journal\":{\"name\":\"Israel Journal of Mathematics\",\"volume\":\"92 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Israel Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11856-023-2584-7\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-023-2584-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们从无限完成的角度给出了环相对双曲形似特殊群的特征。我们还证明了相对双曲虚实特殊群 G 的无限完成Ĝ 的子群的 Tits 替代性,并完全描述了有限生成的亲Ĝ 子群。这适用于双曲算术流形基群的无限完备性。我们推导出,SO(n, 1) 的标准算术网格的同位核的所有有限生成的原 p 子群都是自由原 p 群。
The profinite completion of relatively hyperbolic virtually special groups
We give a characterization of toral relatively hyperbolic virtually special groups in terms of the profinite completion. We also prove a Tits alternative for subgroups of the profinite completion Ĝ of a relatively hyperbolic virtually compact special group G and completely describe finitely generated pro-p subgroups of Ĝ. This applies to the profinite completion of the fundamental group of a hyperbolic arithmetic manifold. We deduce that all finitely generated pro-p subgroups of the congruence kernel of a standard arithmetic lattice of SO(n, 1) are free pro-p.
期刊介绍:
The Israel Journal of Mathematics is an international journal publishing high-quality original research papers in a wide spectrum of pure and applied mathematics. The prestigious interdisciplinary editorial board reflects the diversity of subjects covered in this journal, including set theory, model theory, algebra, group theory, number theory, analysis, functional analysis, ergodic theory, algebraic topology, geometry, combinatorics, theoretical computer science, mathematical physics, and applied mathematics.