{"title":"相对双曲形似特殊群的无限完形","authors":"Pavel Zalesskii","doi":"10.1007/s11856-023-2584-7","DOIUrl":null,"url":null,"abstract":"<p>We give a characterization of toral relatively hyperbolic virtually special groups in terms of the profinite completion. We also prove a Tits alternative for subgroups of the profinite completion <i>Ĝ</i> of a relatively hyperbolic virtually compact special group <i>G</i> and completely describe finitely generated pro-<i>p</i> subgroups of <i>Ĝ</i>. This applies to the profinite completion of the fundamental group of a hyperbolic arithmetic manifold. We deduce that all finitely generated pro-<i>p</i> subgroups of the congruence kernel of a standard arithmetic lattice of <i>SO</i>(<i>n</i>, 1) are free pro-<i>p</i>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The profinite completion of relatively hyperbolic virtually special groups\",\"authors\":\"Pavel Zalesskii\",\"doi\":\"10.1007/s11856-023-2584-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We give a characterization of toral relatively hyperbolic virtually special groups in terms of the profinite completion. We also prove a Tits alternative for subgroups of the profinite completion <i>Ĝ</i> of a relatively hyperbolic virtually compact special group <i>G</i> and completely describe finitely generated pro-<i>p</i> subgroups of <i>Ĝ</i>. This applies to the profinite completion of the fundamental group of a hyperbolic arithmetic manifold. We deduce that all finitely generated pro-<i>p</i> subgroups of the congruence kernel of a standard arithmetic lattice of <i>SO</i>(<i>n</i>, 1) are free pro-<i>p</i>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11856-023-2584-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-023-2584-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们从无限完成的角度给出了环相对双曲形似特殊群的特征。我们还证明了相对双曲虚实特殊群 G 的无限完成Ĝ 的子群的 Tits 替代性,并完全描述了有限生成的亲Ĝ 子群。这适用于双曲算术流形基群的无限完备性。我们推导出,SO(n, 1) 的标准算术网格的同位核的所有有限生成的原 p 子群都是自由原 p 群。
The profinite completion of relatively hyperbolic virtually special groups
We give a characterization of toral relatively hyperbolic virtually special groups in terms of the profinite completion. We also prove a Tits alternative for subgroups of the profinite completion Ĝ of a relatively hyperbolic virtually compact special group G and completely describe finitely generated pro-p subgroups of Ĝ. This applies to the profinite completion of the fundamental group of a hyperbolic arithmetic manifold. We deduce that all finitely generated pro-p subgroups of the congruence kernel of a standard arithmetic lattice of SO(n, 1) are free pro-p.