{"title":"关于准共形映射的平均半径","authors":"Alastair N. Fletcher, Jacob Pratscher","doi":"10.1007/s11856-023-2583-8","DOIUrl":null,"url":null,"abstract":"<p>We study the mean radius growth function for quasiconformal mappings. We give a new sub-class of quasiconformal mappings in ℝ<sup><i>n</i></sup>, for <i>n</i> ≥ 2, called bounded integrable parameterization mappings, or BIP maps for short. These have the property that the restriction of the Zorich transform to each slice has uniformly bounded derivative in <i>L</i><sup><i>n</i>/(<i>n</i>−1)</sup>. For BIP maps, the logarithmic transform of the mean radius function is bi-Lipschitz. We then apply our result to BIP maps with simple infinitesimal spaces to show that the asymptotic representation is indeed quasiconformal by showing that its Zorich transform is a bi-Lipschitz map.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the mean radius of quasiconformal mappings\",\"authors\":\"Alastair N. Fletcher, Jacob Pratscher\",\"doi\":\"10.1007/s11856-023-2583-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the mean radius growth function for quasiconformal mappings. We give a new sub-class of quasiconformal mappings in ℝ<sup><i>n</i></sup>, for <i>n</i> ≥ 2, called bounded integrable parameterization mappings, or BIP maps for short. These have the property that the restriction of the Zorich transform to each slice has uniformly bounded derivative in <i>L</i><sup><i>n</i>/(<i>n</i>−1)</sup>. For BIP maps, the logarithmic transform of the mean radius function is bi-Lipschitz. We then apply our result to BIP maps with simple infinitesimal spaces to show that the asymptotic representation is indeed quasiconformal by showing that its Zorich transform is a bi-Lipschitz map.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11856-023-2583-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-023-2583-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We study the mean radius growth function for quasiconformal mappings. We give a new sub-class of quasiconformal mappings in ℝn, for n ≥ 2, called bounded integrable parameterization mappings, or BIP maps for short. These have the property that the restriction of the Zorich transform to each slice has uniformly bounded derivative in Ln/(n−1). For BIP maps, the logarithmic transform of the mean radius function is bi-Lipschitz. We then apply our result to BIP maps with simple infinitesimal spaces to show that the asymptotic representation is indeed quasiconformal by showing that its Zorich transform is a bi-Lipschitz map.