关于准共形映射的平均半径

Pub Date : 2023-11-29 DOI:10.1007/s11856-023-2583-8
Alastair N. Fletcher, Jacob Pratscher
{"title":"关于准共形映射的平均半径","authors":"Alastair N. Fletcher, Jacob Pratscher","doi":"10.1007/s11856-023-2583-8","DOIUrl":null,"url":null,"abstract":"<p>We study the mean radius growth function for quasiconformal mappings. We give a new sub-class of quasiconformal mappings in ℝ<sup><i>n</i></sup>, for <i>n</i> ≥ 2, called bounded integrable parameterization mappings, or BIP maps for short. These have the property that the restriction of the Zorich transform to each slice has uniformly bounded derivative in <i>L</i><sup><i>n</i>/(<i>n</i>−1)</sup>. For BIP maps, the logarithmic transform of the mean radius function is bi-Lipschitz. We then apply our result to BIP maps with simple infinitesimal spaces to show that the asymptotic representation is indeed quasiconformal by showing that its Zorich transform is a bi-Lipschitz map.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the mean radius of quasiconformal mappings\",\"authors\":\"Alastair N. Fletcher, Jacob Pratscher\",\"doi\":\"10.1007/s11856-023-2583-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the mean radius growth function for quasiconformal mappings. We give a new sub-class of quasiconformal mappings in ℝ<sup><i>n</i></sup>, for <i>n</i> ≥ 2, called bounded integrable parameterization mappings, or BIP maps for short. These have the property that the restriction of the Zorich transform to each slice has uniformly bounded derivative in <i>L</i><sup><i>n</i>/(<i>n</i>−1)</sup>. For BIP maps, the logarithmic transform of the mean radius function is bi-Lipschitz. We then apply our result to BIP maps with simple infinitesimal spaces to show that the asymptotic representation is indeed quasiconformal by showing that its Zorich transform is a bi-Lipschitz map.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11856-023-2583-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-023-2583-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究准共形映射的平均半径增长函数。对于 n ≥ 2,我们给出了ℝn 中准共形映射的一个新子类,称为有界可积分参数化映射,简称 BIP 映射。这些映射具有这样的性质:佐里克变换对每个切片的限制在 Ln/(n-1) 中具有均匀有界的导数。对于 BIP 映射,平均半径函数的对数变换是双立普茨的。然后,我们将我们的结果应用于具有简单无穷小空间的 BIP 映射,通过证明其佐里奇变换是一个双利普斯奇兹映射,来证明渐近表示确实是准共形的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the mean radius of quasiconformal mappings

We study the mean radius growth function for quasiconformal mappings. We give a new sub-class of quasiconformal mappings in ℝn, for n ≥ 2, called bounded integrable parameterization mappings, or BIP maps for short. These have the property that the restriction of the Zorich transform to each slice has uniformly bounded derivative in Ln/(n−1). For BIP maps, the logarithmic transform of the mean radius function is bi-Lipschitz. We then apply our result to BIP maps with simple infinitesimal spaces to show that the asymptotic representation is indeed quasiconformal by showing that its Zorich transform is a bi-Lipschitz map.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信