论空间形式中封闭双保守曲面的存在

IF 0.7 4区 数学 Q2 MATHEMATICS
S. Montaldo, A. Pámpano
{"title":"论空间形式中封闭双保守曲面的存在","authors":"S. Montaldo, A. Pámpano","doi":"10.4310/cag.2023.v31.n2.a2","DOIUrl":null,"url":null,"abstract":"Biconservative surfaces of Riemannian $3$-space forms $N^3(\\rho)$, are either constant mean curvature (CMC) surfaces or rotational linear Weingarten surfaces verifying the relation $3 \\kappa_1 + \\kappa_2 = 0$ between their principal curvatures $\\kappa_1$ and $\\kappa_2$. We characterise the profile curves of the non-CMC biconservative surfaces as the critical curves for a suitable curvature energy. Moreover, using this characterisation, we prove the existence of a discrete biparametric family of closed, i.e. compact without boundary, non-CMC biconservative surfaces in the round $3$-sphere, $\\mathbb{S}^3(\\rho)$. However, none of these closed surfaces is embedded in $\\mathbb{S}^ (\\rho)$.","PeriodicalId":50662,"journal":{"name":"Communications in Analysis and Geometry","volume":"26 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"On the existence of closed biconservative surfaces in space forms\",\"authors\":\"S. Montaldo, A. Pámpano\",\"doi\":\"10.4310/cag.2023.v31.n2.a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biconservative surfaces of Riemannian $3$-space forms $N^3(\\\\rho)$, are either constant mean curvature (CMC) surfaces or rotational linear Weingarten surfaces verifying the relation $3 \\\\kappa_1 + \\\\kappa_2 = 0$ between their principal curvatures $\\\\kappa_1$ and $\\\\kappa_2$. We characterise the profile curves of the non-CMC biconservative surfaces as the critical curves for a suitable curvature energy. Moreover, using this characterisation, we prove the existence of a discrete biparametric family of closed, i.e. compact without boundary, non-CMC biconservative surfaces in the round $3$-sphere, $\\\\mathbb{S}^3(\\\\rho)$. However, none of these closed surfaces is embedded in $\\\\mathbb{S}^ (\\\\rho)$.\",\"PeriodicalId\":50662,\"journal\":{\"name\":\"Communications in Analysis and Geometry\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cag.2023.v31.n2.a2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cag.2023.v31.n2.a2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 11

摘要

黎曼$3$空间形式$N^3(\rho)$的双保守曲面,要么是恒定平均曲率(CMC)曲面,要么是旋转线性魏格登(Weingarten)曲面,它们的主曲率$\kappa_1$和$\kappa_2$之间的关系为$3 \kappa_1+\kappa_2=0$。我们将非 CMC 双保守曲面的轮廓曲线描述为合适曲率能的临界曲线。此外,利用这一特征,我们证明了在圆 3$球$\mathbb{S}^3(\rho)$中存在离散的封闭(即无边界紧凑)非 CMC 双保守曲面的双参数族。然而,这些封闭曲面中没有一个嵌入到 $\mathbb{S}^ (\rho)$ 中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the existence of closed biconservative surfaces in space forms
Biconservative surfaces of Riemannian $3$-space forms $N^3(\rho)$, are either constant mean curvature (CMC) surfaces or rotational linear Weingarten surfaces verifying the relation $3 \kappa_1 + \kappa_2 = 0$ between their principal curvatures $\kappa_1$ and $\kappa_2$. We characterise the profile curves of the non-CMC biconservative surfaces as the critical curves for a suitable curvature energy. Moreover, using this characterisation, we prove the existence of a discrete biparametric family of closed, i.e. compact without boundary, non-CMC biconservative surfaces in the round $3$-sphere, $\mathbb{S}^3(\rho)$. However, none of these closed surfaces is embedded in $\mathbb{S}^ (\rho)$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
4
审稿时长
>12 weeks
期刊介绍: Publishes high-quality papers on subjects related to classical analysis, partial differential equations, algebraic geometry, differential geometry, and topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信