{"title":"二阶卡诺群中的布尔干-布雷齐斯-米罗内斯库-达维拉定理","authors":"Nicola Garofalo, Giulio Tralli","doi":"10.4310/cag.2023.v31.n2.a3","DOIUrl":null,"url":null,"abstract":"In this note we prove the following theorem in any Carnot group of step two $\\mathbb{G}$:\\[\\lim_{s \\nearrow 1/2} (1 - 2s) \\mathfrak{P}_{H,s} (E) = \\frac{4}{\\sqrt{\\pi}} \\mathfrak{P}_H (E).\\]Here, $\\mathfrak{P}_H (E)$ represents the horizontal perimeter of a measurable set $E \\subset \\mathbb{G}$, whereas the nonlocal horizontal perimeter $\\mathfrak{P}_{H,s} (E)$ is a heat based Besov seminorm. This result represents a dimensionless sub-Riemannian counterpart of a famous characterisation of Bourgain–Brezis–Mironescu and Dávila.","PeriodicalId":50662,"journal":{"name":"Communications in Analysis and Geometry","volume":"52 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"A Bourgain–Brezis–Mironescu–Dávila theorem in Carnot groups of step two\",\"authors\":\"Nicola Garofalo, Giulio Tralli\",\"doi\":\"10.4310/cag.2023.v31.n2.a3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note we prove the following theorem in any Carnot group of step two $\\\\mathbb{G}$:\\\\[\\\\lim_{s \\\\nearrow 1/2} (1 - 2s) \\\\mathfrak{P}_{H,s} (E) = \\\\frac{4}{\\\\sqrt{\\\\pi}} \\\\mathfrak{P}_H (E).\\\\]Here, $\\\\mathfrak{P}_H (E)$ represents the horizontal perimeter of a measurable set $E \\\\subset \\\\mathbb{G}$, whereas the nonlocal horizontal perimeter $\\\\mathfrak{P}_{H,s} (E)$ is a heat based Besov seminorm. This result represents a dimensionless sub-Riemannian counterpart of a famous characterisation of Bourgain–Brezis–Mironescu and Dávila.\",\"PeriodicalId\":50662,\"journal\":{\"name\":\"Communications in Analysis and Geometry\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cag.2023.v31.n2.a3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cag.2023.v31.n2.a3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
A Bourgain–Brezis–Mironescu–Dávila theorem in Carnot groups of step two
In this note we prove the following theorem in any Carnot group of step two $\mathbb{G}$:\[\lim_{s \nearrow 1/2} (1 - 2s) \mathfrak{P}_{H,s} (E) = \frac{4}{\sqrt{\pi}} \mathfrak{P}_H (E).\]Here, $\mathfrak{P}_H (E)$ represents the horizontal perimeter of a measurable set $E \subset \mathbb{G}$, whereas the nonlocal horizontal perimeter $\mathfrak{P}_{H,s} (E)$ is a heat based Besov seminorm. This result represents a dimensionless sub-Riemannian counterpart of a famous characterisation of Bourgain–Brezis–Mironescu and Dávila.
期刊介绍:
Publishes high-quality papers on subjects related to classical analysis, partial differential equations, algebraic geometry, differential geometry, and topology.