{"title":"可重构多设备系统的基于状态的维护策略","authors":"Shu-Lian Xie, Feng Xue, Wei-Min Zhang, Jia-Wei Zhu","doi":"10.1007/s40436-023-00465-x","DOIUrl":null,"url":null,"abstract":"<div><p>The exploration of component states for optimizing maintenance schedules in complex systems has garnered significant interest from researchers. However, current literature usually overlooks the critical aspects of system flexibility and reconfigurability. Judicious implementation of system reconfiguration can effectively mitigate system downtime and enhance production continuity. This study proposes a dynamic condition-based maintenance policy considering reconfiguration for reconfigurable systems. A double-layer decision rule was constructed for the devices and systems. To achieve the best overall maintenance effect of the system, the remaining useful life probability distribution and recommended maintenance time of each device were used to optimize the concurrent maintenance time window of the devices and determine whether to reconfigure them. A comprehensive maintenance efficiency index was introduced that simultaneously considered the maintenance cost rate, reliability, and availability of the system to characterize the overall maintenance effect. The reconfiguration cost was included in the maintenance cost. The proposed policy was tested through numerical experiments and compared with different-level policies. The results show that the proposed policy can significantly reduce the downtime and maintenance costs and improve the overall system reliability and availability.</p></div>","PeriodicalId":7342,"journal":{"name":"Advances in Manufacturing","volume":"12 2","pages":"252 - 269"},"PeriodicalIF":4.2000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A condition-based maintenance policy for reconfigurable multi-device systems\",\"authors\":\"Shu-Lian Xie, Feng Xue, Wei-Min Zhang, Jia-Wei Zhu\",\"doi\":\"10.1007/s40436-023-00465-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The exploration of component states for optimizing maintenance schedules in complex systems has garnered significant interest from researchers. However, current literature usually overlooks the critical aspects of system flexibility and reconfigurability. Judicious implementation of system reconfiguration can effectively mitigate system downtime and enhance production continuity. This study proposes a dynamic condition-based maintenance policy considering reconfiguration for reconfigurable systems. A double-layer decision rule was constructed for the devices and systems. To achieve the best overall maintenance effect of the system, the remaining useful life probability distribution and recommended maintenance time of each device were used to optimize the concurrent maintenance time window of the devices and determine whether to reconfigure them. A comprehensive maintenance efficiency index was introduced that simultaneously considered the maintenance cost rate, reliability, and availability of the system to characterize the overall maintenance effect. The reconfiguration cost was included in the maintenance cost. The proposed policy was tested through numerical experiments and compared with different-level policies. The results show that the proposed policy can significantly reduce the downtime and maintenance costs and improve the overall system reliability and availability.</p></div>\",\"PeriodicalId\":7342,\"journal\":{\"name\":\"Advances in Manufacturing\",\"volume\":\"12 2\",\"pages\":\"252 - 269\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40436-023-00465-x\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40436-023-00465-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
A condition-based maintenance policy for reconfigurable multi-device systems
The exploration of component states for optimizing maintenance schedules in complex systems has garnered significant interest from researchers. However, current literature usually overlooks the critical aspects of system flexibility and reconfigurability. Judicious implementation of system reconfiguration can effectively mitigate system downtime and enhance production continuity. This study proposes a dynamic condition-based maintenance policy considering reconfiguration for reconfigurable systems. A double-layer decision rule was constructed for the devices and systems. To achieve the best overall maintenance effect of the system, the remaining useful life probability distribution and recommended maintenance time of each device were used to optimize the concurrent maintenance time window of the devices and determine whether to reconfigure them. A comprehensive maintenance efficiency index was introduced that simultaneously considered the maintenance cost rate, reliability, and availability of the system to characterize the overall maintenance effect. The reconfiguration cost was included in the maintenance cost. The proposed policy was tested through numerical experiments and compared with different-level policies. The results show that the proposed policy can significantly reduce the downtime and maintenance costs and improve the overall system reliability and availability.
期刊介绍:
As an innovative, fundamental and scientific journal, Advances in Manufacturing aims to describe the latest regional and global research results and forefront developments in advanced manufacturing field. As such, it serves as an international platform for academic exchange between experts, scholars and researchers in this field.
All articles in Advances in Manufacturing are peer reviewed. Respected scholars from the fields of advanced manufacturing fields will be invited to write some comments. We also encourage and give priority to research papers that have made major breakthroughs or innovations in the fundamental theory. The targeted fields include: manufacturing automation, mechatronics and robotics, precision manufacturing and control, micro-nano-manufacturing, green manufacturing, design in manufacturing, metallic and nonmetallic materials in manufacturing, metallurgical process, etc. The forms of articles include (but not limited to): academic articles, research reports, and general reviews.