从复杂的接触结构到真实的几乎接触的 3 结构

IF 0.6 3区 数学 Q3 MATHEMATICS
Eder M. Correa
{"title":"从复杂的接触结构到真实的几乎接触的 3 结构","authors":"Eder M. Correa","doi":"10.1007/s10455-023-09935-8","DOIUrl":null,"url":null,"abstract":"<div><p>We prove that every complex contact structure gives rise to a distinguished type of almost contact metric 3-structure. As an application, we provide several new examples of manifolds which admit taut contact circles, taut and round almost cosymplectic 2-spheres, and almost hypercontact (metric) structures. These examples generalize the well-known examples of contact circles defined by the Liouville-Cartan forms on the unit cotangent bundle of Riemann surfaces. Further, we provide sufficient conditions for a compact complex contact manifold to be the twistor space of a positive quaternionic Kähler manifold.</p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From complex contact structures to real almost contact 3-structures\",\"authors\":\"Eder M. Correa\",\"doi\":\"10.1007/s10455-023-09935-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove that every complex contact structure gives rise to a distinguished type of almost contact metric 3-structure. As an application, we provide several new examples of manifolds which admit taut contact circles, taut and round almost cosymplectic 2-spheres, and almost hypercontact (metric) structures. These examples generalize the well-known examples of contact circles defined by the Liouville-Cartan forms on the unit cotangent bundle of Riemann surfaces. Further, we provide sufficient conditions for a compact complex contact manifold to be the twistor space of a positive quaternionic Kähler manifold.</p></div>\",\"PeriodicalId\":8268,\"journal\":{\"name\":\"Annals of Global Analysis and Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Global Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10455-023-09935-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-023-09935-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了每一种复杂接触结构都会产生一种不同类型的几乎接触度量 3 结构。作为应用,我们提供了几个流形的新例子,这些流形包含绷紧接触圆、绷紧和圆形的几乎余协2球以及几乎超接触(度量)结构。这些例子概括了由黎曼曲面单位切向束上的Liouville-Cartan形式定义的接触圆的著名例子。此外,我们还为紧凑复接触流形成为正四元凯勒流形的扭转空间提供了充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From complex contact structures to real almost contact 3-structures

We prove that every complex contact structure gives rise to a distinguished type of almost contact metric 3-structure. As an application, we provide several new examples of manifolds which admit taut contact circles, taut and round almost cosymplectic 2-spheres, and almost hypercontact (metric) structures. These examples generalize the well-known examples of contact circles defined by the Liouville-Cartan forms on the unit cotangent bundle of Riemann surfaces. Further, we provide sufficient conditions for a compact complex contact manifold to be the twistor space of a positive quaternionic Kähler manifold.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
70
审稿时长
6-12 weeks
期刊介绍: This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field. The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信