基于图嵌入的故障检测框架,适用于具有多变量时间序列数据集的过程系统

IF 3 Q2 ENGINEERING, CHEMICAL
Umang Goswami , Jyoti Rani , Hariprasad Kodamana , Prakash Kumar Tamboli , Parshotam Dholandas Vaswani
{"title":"基于图嵌入的故障检测框架,适用于具有多变量时间序列数据集的过程系统","authors":"Umang Goswami ,&nbsp;Jyoti Rani ,&nbsp;Hariprasad Kodamana ,&nbsp;Prakash Kumar Tamboli ,&nbsp;Parshotam Dholandas Vaswani","doi":"10.1016/j.dche.2023.100135","DOIUrl":null,"url":null,"abstract":"<div><p>Due to the enormous potential of modelling, graph-based approaches have been used for various applications in the process industries. In this study, we propose a fault detection framework through graphs by utilising its attributes in the form of node embeddings. Shallow embedding methods are deployed to generate node embedding vectors. Shallow embedding methods are broadly classified into matrix factorisation and skip-gram-based methods. Node2vec and Deepwalk fall under skip-gram models, while GraphRep and HOPE constitute the Matrix factorisation methods. Node embedding values generated from these methods are then fed to the variational auto-encoder, which ranks the nodes in reconstruction loss value. The node embedding reconstruction loss values exceeding a particular threshold are considered outliers. The proposed work has been validated on NPCIL power-flux data and the benchmark Tennessee Eastman data. The results indicate that skip-gram models, especially Node2vec-VAE, outperformed the matrix factorisation methods for both the above-mentioned datasets.</p></div>","PeriodicalId":72815,"journal":{"name":"Digital Chemical Engineering","volume":"10 ","pages":"Article 100135"},"PeriodicalIF":3.0000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772508123000534/pdfft?md5=1251fb013b40db08915ec20c700f5e1d&pid=1-s2.0-S2772508123000534-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A graph embedding based fault detection framework for process systems with multi-variate time-series datasets\",\"authors\":\"Umang Goswami ,&nbsp;Jyoti Rani ,&nbsp;Hariprasad Kodamana ,&nbsp;Prakash Kumar Tamboli ,&nbsp;Parshotam Dholandas Vaswani\",\"doi\":\"10.1016/j.dche.2023.100135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Due to the enormous potential of modelling, graph-based approaches have been used for various applications in the process industries. In this study, we propose a fault detection framework through graphs by utilising its attributes in the form of node embeddings. Shallow embedding methods are deployed to generate node embedding vectors. Shallow embedding methods are broadly classified into matrix factorisation and skip-gram-based methods. Node2vec and Deepwalk fall under skip-gram models, while GraphRep and HOPE constitute the Matrix factorisation methods. Node embedding values generated from these methods are then fed to the variational auto-encoder, which ranks the nodes in reconstruction loss value. The node embedding reconstruction loss values exceeding a particular threshold are considered outliers. The proposed work has been validated on NPCIL power-flux data and the benchmark Tennessee Eastman data. The results indicate that skip-gram models, especially Node2vec-VAE, outperformed the matrix factorisation methods for both the above-mentioned datasets.</p></div>\",\"PeriodicalId\":72815,\"journal\":{\"name\":\"Digital Chemical Engineering\",\"volume\":\"10 \",\"pages\":\"Article 100135\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772508123000534/pdfft?md5=1251fb013b40db08915ec20c700f5e1d&pid=1-s2.0-S2772508123000534-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772508123000534\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772508123000534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于建模的巨大潜力,基于图的方法已被用于流程工业的各种应用中。在本研究中,我们通过节点嵌入的形式利用图的属性,提出了一个故障检测框架。浅层嵌入方法用于生成节点嵌入向量。浅层嵌入方法大致分为矩阵因式分解法和基于跳格的方法。Node2vec 和 Deepwalk 属于跳格模型,而 GraphRep 和 HOPE 则属于矩阵因式分解方法。由这些方法生成的节点嵌入值随后被输入变异自动编码器,该编码器会根据重建损失值对节点进行排序。超过特定阈值的节点嵌入重建损失值被视为异常值。已在 NPCIL 电量流量数据和基准田纳西州伊士曼数据上对所提出的工作进行了验证。结果表明,在上述两个数据集上,跳格模型,尤其是 Node2vec-VAE 的性能优于矩阵因式分解方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A graph embedding based fault detection framework for process systems with multi-variate time-series datasets

Due to the enormous potential of modelling, graph-based approaches have been used for various applications in the process industries. In this study, we propose a fault detection framework through graphs by utilising its attributes in the form of node embeddings. Shallow embedding methods are deployed to generate node embedding vectors. Shallow embedding methods are broadly classified into matrix factorisation and skip-gram-based methods. Node2vec and Deepwalk fall under skip-gram models, while GraphRep and HOPE constitute the Matrix factorisation methods. Node embedding values generated from these methods are then fed to the variational auto-encoder, which ranks the nodes in reconstruction loss value. The node embedding reconstruction loss values exceeding a particular threshold are considered outliers. The proposed work has been validated on NPCIL power-flux data and the benchmark Tennessee Eastman data. The results indicate that skip-gram models, especially Node2vec-VAE, outperformed the matrix factorisation methods for both the above-mentioned datasets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信