{"title":"通过 $\\mathcal{B}$ 微积分对半群生成器的 Cayley 变换和倒数进行衰减估计","authors":"Masashi Wakaiki","doi":"arxiv-2312.05692","DOIUrl":null,"url":null,"abstract":"Let $-A$ be the generator of a bounded $C_0$-semigroup $(e^{-tA})_{t \\geq 0}$\non a Hilbert space. First we study the long-time asymptotic behavior of the\nCayley transform $V_{\\omega}(A) := (A-\\omega I) (A+\\omega I)^{-1}$ with $\\omega\n>0$. We give a decay estimate for $\\|V_{\\omega}(A)^nA^{-1}\\|$ when\n$(e^{-tA})_{t \\geq 0}$ is polynomially stable. Considering the case where the\nparameter $\\omega$ varies, we estimate $\\|\\prod_{k=1}^n\n(V_{\\omega_k}(A))A^{-1}\\|$ for exponentially stable $C_0$-semigroups\n$(e^{-tA})_{t \\geq 0}$. Next we show that if the generator $-A$ of the bounded\n$C_0$-semigroup has a bounded inverse, then $\\sup_{t \\geq 0} \\|e^{-tA^{-1}}\nA^{-\\alpha} \\| < \\infty$ for all $\\alpha >0$. We also present an estimate for\nthe rate of decay of $\\|e^{-tA^{-1}} A^{-1} \\|$, assuming that $(e^{-tA})_{t\n\\geq 0}$ is polynomially stable. To obtain these results, we use operator norm\nestimates offered by a functional calculus called the $\\mathcal{B}$-calculus.","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decay estimates for Cayley transforms and inverses of semigroup generators via the $\\\\mathcal{B}$-calculus\",\"authors\":\"Masashi Wakaiki\",\"doi\":\"arxiv-2312.05692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $-A$ be the generator of a bounded $C_0$-semigroup $(e^{-tA})_{t \\\\geq 0}$\\non a Hilbert space. First we study the long-time asymptotic behavior of the\\nCayley transform $V_{\\\\omega}(A) := (A-\\\\omega I) (A+\\\\omega I)^{-1}$ with $\\\\omega\\n>0$. We give a decay estimate for $\\\\|V_{\\\\omega}(A)^nA^{-1}\\\\|$ when\\n$(e^{-tA})_{t \\\\geq 0}$ is polynomially stable. Considering the case where the\\nparameter $\\\\omega$ varies, we estimate $\\\\|\\\\prod_{k=1}^n\\n(V_{\\\\omega_k}(A))A^{-1}\\\\|$ for exponentially stable $C_0$-semigroups\\n$(e^{-tA})_{t \\\\geq 0}$. Next we show that if the generator $-A$ of the bounded\\n$C_0$-semigroup has a bounded inverse, then $\\\\sup_{t \\\\geq 0} \\\\|e^{-tA^{-1}}\\nA^{-\\\\alpha} \\\\| < \\\\infty$ for all $\\\\alpha >0$. We also present an estimate for\\nthe rate of decay of $\\\\|e^{-tA^{-1}} A^{-1} \\\\|$, assuming that $(e^{-tA})_{t\\n\\\\geq 0}$ is polynomially stable. To obtain these results, we use operator norm\\nestimates offered by a functional calculus called the $\\\\mathcal{B}$-calculus.\",\"PeriodicalId\":501061,\"journal\":{\"name\":\"arXiv - CS - Numerical Analysis\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.05692\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.05692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Decay estimates for Cayley transforms and inverses of semigroup generators via the $\mathcal{B}$-calculus
Let $-A$ be the generator of a bounded $C_0$-semigroup $(e^{-tA})_{t \geq 0}$
on a Hilbert space. First we study the long-time asymptotic behavior of the
Cayley transform $V_{\omega}(A) := (A-\omega I) (A+\omega I)^{-1}$ with $\omega
>0$. We give a decay estimate for $\|V_{\omega}(A)^nA^{-1}\|$ when
$(e^{-tA})_{t \geq 0}$ is polynomially stable. Considering the case where the
parameter $\omega$ varies, we estimate $\|\prod_{k=1}^n
(V_{\omega_k}(A))A^{-1}\|$ for exponentially stable $C_0$-semigroups
$(e^{-tA})_{t \geq 0}$. Next we show that if the generator $-A$ of the bounded
$C_0$-semigroup has a bounded inverse, then $\sup_{t \geq 0} \|e^{-tA^{-1}}
A^{-\alpha} \| < \infty$ for all $\alpha >0$. We also present an estimate for
the rate of decay of $\|e^{-tA^{-1}} A^{-1} \|$, assuming that $(e^{-tA})_{t
\geq 0}$ is polynomially stable. To obtain these results, we use operator norm
estimates offered by a functional calculus called the $\mathcal{B}$-calculus.