边色完整图中的彩虹子图:回答厄尔多斯和图扎的两个问题

Pub Date : 2023-12-12 DOI:10.1002/jgt.23063
Maria Axenovich, Felix C. Clemen
{"title":"边色完整图中的彩虹子图:回答厄尔多斯和图扎的两个问题","authors":"Maria Axenovich,&nbsp;Felix C. Clemen","doi":"10.1002/jgt.23063","DOIUrl":null,"url":null,"abstract":"<p>An edge-coloring of a complete graph with a set of colors <math>\n <semantics>\n <mrow>\n <mi>C</mi>\n </mrow>\n <annotation> $C$</annotation>\n </semantics></math> is called <i>completely balanced</i> if any vertex is incident to the same number of edges of each color from <math>\n <semantics>\n <mrow>\n <mi>C</mi>\n </mrow>\n <annotation> $C$</annotation>\n </semantics></math>. Erdős and Tuza asked in 1993 whether for any graph <math>\n <semantics>\n <mrow>\n <mi>F</mi>\n </mrow>\n <annotation> $F$</annotation>\n </semantics></math> on <math>\n <semantics>\n <mrow>\n <mi>ℓ</mi>\n </mrow>\n <annotation> $\\ell $</annotation>\n </semantics></math> edges and any completely balanced coloring of any sufficiently large complete graph using <math>\n <semantics>\n <mrow>\n <mi>ℓ</mi>\n </mrow>\n <annotation> $\\ell $</annotation>\n </semantics></math> colors contains a rainbow copy of <math>\n <semantics>\n <mrow>\n <mi>F</mi>\n </mrow>\n <annotation> $F$</annotation>\n </semantics></math>. This question was restated by Erdős in his list of “Some of my favourite problems on cycles and colourings.” We answer this question in the negative for most cliques <math>\n <semantics>\n <mrow>\n <mi>F</mi>\n <mo>=</mo>\n <msub>\n <mi>K</mi>\n <mi>q</mi>\n </msub>\n </mrow>\n <annotation> $F={K}_{q}$</annotation>\n </semantics></math> by giving explicit constructions of respective completely balanced colorings. Further, we answer a related question concerning completely balanced colorings of complete graphs with more colors than the number of edges in the graph <math>\n <semantics>\n <mrow>\n <mi>F</mi>\n </mrow>\n <annotation> $F$</annotation>\n </semantics></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23063","citationCount":"0","resultStr":"{\"title\":\"Rainbow subgraphs in edge-colored complete graphs: Answering two questions by Erdős and Tuza\",\"authors\":\"Maria Axenovich,&nbsp;Felix C. Clemen\",\"doi\":\"10.1002/jgt.23063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An edge-coloring of a complete graph with a set of colors <math>\\n <semantics>\\n <mrow>\\n <mi>C</mi>\\n </mrow>\\n <annotation> $C$</annotation>\\n </semantics></math> is called <i>completely balanced</i> if any vertex is incident to the same number of edges of each color from <math>\\n <semantics>\\n <mrow>\\n <mi>C</mi>\\n </mrow>\\n <annotation> $C$</annotation>\\n </semantics></math>. Erdős and Tuza asked in 1993 whether for any graph <math>\\n <semantics>\\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n <annotation> $F$</annotation>\\n </semantics></math> on <math>\\n <semantics>\\n <mrow>\\n <mi>ℓ</mi>\\n </mrow>\\n <annotation> $\\\\ell $</annotation>\\n </semantics></math> edges and any completely balanced coloring of any sufficiently large complete graph using <math>\\n <semantics>\\n <mrow>\\n <mi>ℓ</mi>\\n </mrow>\\n <annotation> $\\\\ell $</annotation>\\n </semantics></math> colors contains a rainbow copy of <math>\\n <semantics>\\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n <annotation> $F$</annotation>\\n </semantics></math>. This question was restated by Erdős in his list of “Some of my favourite problems on cycles and colourings.” We answer this question in the negative for most cliques <math>\\n <semantics>\\n <mrow>\\n <mi>F</mi>\\n <mo>=</mo>\\n <msub>\\n <mi>K</mi>\\n <mi>q</mi>\\n </msub>\\n </mrow>\\n <annotation> $F={K}_{q}$</annotation>\\n </semantics></math> by giving explicit constructions of respective completely balanced colorings. Further, we answer a related question concerning completely balanced colorings of complete graphs with more colors than the number of edges in the graph <math>\\n <semantics>\\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n <annotation> $F$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23063\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如果任何顶点都与 C$C$ 中每种颜色的相同数量的边相连,则具有颜色集 C$C$ 的完整图的边着色称为完全平衡着色。厄多斯和图扎在 1993 年提出了这样一个问题:对于边上有 ℓ$\ell $ 的任何图 F$F$,以及任何足够大的完整图的完全平衡着色(使用 ℓ$\ell $ 颜色)是否包含 F$F$ 的彩虹副本?厄尔多斯在他的 "我最喜欢的一些循环和着色问题 "列表中重述了这个问题。我们通过给出各自完全平衡着色的明确构造,回答了大多数小群 F=Kq$F={K}_{q}$ 的否定问题。此外,我们还回答了一个与之相关的问题,即颜色数多于图 F$F$ 中边数的完整图的完全平衡着色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Rainbow subgraphs in edge-colored complete graphs: Answering two questions by Erdős and Tuza

分享
查看原文
Rainbow subgraphs in edge-colored complete graphs: Answering two questions by Erdős and Tuza

An edge-coloring of a complete graph with a set of colors C $C$ is called completely balanced if any vertex is incident to the same number of edges of each color from C $C$ . Erdős and Tuza asked in 1993 whether for any graph F $F$ on $\ell $ edges and any completely balanced coloring of any sufficiently large complete graph using $\ell $ colors contains a rainbow copy of F $F$ . This question was restated by Erdős in his list of “Some of my favourite problems on cycles and colourings.” We answer this question in the negative for most cliques F = K q $F={K}_{q}$ by giving explicit constructions of respective completely balanced colorings. Further, we answer a related question concerning completely balanced colorings of complete graphs with more colors than the number of edges in the graph F $F$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信