{"title":"利用偏差校正欧氏距离判别函数对重复测量进行分类","authors":"Edward Kanuti Ngailo, Saralees Nadarajah","doi":"10.1007/s42952-023-00246-z","DOIUrl":null,"url":null,"abstract":"<p>This paper introduces a novel approach for approximating misclassification probabilities in Euclidean distance classifier when the group means exhibit a bilinear structure such as in the growth curve model first proposed by Potthoff and Roy (Biometrika 51:313–326, 1964). Initially, by leveraging certain statistical relationships, we establish two general results for the improved Euclidean discriminant function in both weighted and unweighted growth curve mean structures. We derive these approximations for the expected misclassification probabilities with respect to the distribution of the improved Euclidean discriminant function. Additionally, we compare the misclassification probabilities of the improved Euclidean discriminant function, the standard Euclidean discriminant function, and the linear discriminant function. It is important to note that in cases where the mean structure is weighted, a higher number of repeated measurements yields better classification results with the improved Euclidean discriminant function and the standard Euclidean discriminant function, allowing for more information to be acquired, as opposed to the linear discriminant function, which performs well with a smaller number of repeated measurements. Furthermore, we evaluate the accuracy of the suggested approximations by Monte Carlo simulations.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of repeated measurements using bias corrected Euclidean distance discriminant function\",\"authors\":\"Edward Kanuti Ngailo, Saralees Nadarajah\",\"doi\":\"10.1007/s42952-023-00246-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper introduces a novel approach for approximating misclassification probabilities in Euclidean distance classifier when the group means exhibit a bilinear structure such as in the growth curve model first proposed by Potthoff and Roy (Biometrika 51:313–326, 1964). Initially, by leveraging certain statistical relationships, we establish two general results for the improved Euclidean discriminant function in both weighted and unweighted growth curve mean structures. We derive these approximations for the expected misclassification probabilities with respect to the distribution of the improved Euclidean discriminant function. Additionally, we compare the misclassification probabilities of the improved Euclidean discriminant function, the standard Euclidean discriminant function, and the linear discriminant function. It is important to note that in cases where the mean structure is weighted, a higher number of repeated measurements yields better classification results with the improved Euclidean discriminant function and the standard Euclidean discriminant function, allowing for more information to be acquired, as opposed to the linear discriminant function, which performs well with a smaller number of repeated measurements. Furthermore, we evaluate the accuracy of the suggested approximations by Monte Carlo simulations.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s42952-023-00246-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s42952-023-00246-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文介绍了一种新方法,用于近似欧氏距离分类器中的误分类概率,当群体均值呈现双线性结构时,例如 Potthoff 和 Roy 首次提出的增长曲线模型(Biometrika 51:313-326, 1964)。首先,通过利用某些统计关系,我们为加权和非加权增长曲线均值结构中的改进欧氏判别函数建立了两个一般结果。根据改进欧氏判别函数的分布,我们得出了这些预期误分类概率的近似值。此外,我们还比较了改进欧氏判别函数、标准欧氏判别函数和线性判别函数的误分类概率。值得注意的是,在平均结构加权的情况下,重复测量次数越多,改进欧氏判别函数和标准欧氏判别函数的分类结果就越好,这样可以获得更多的信息,而线性判别函数在重复测量次数较少的情况下表现较好。此外,我们还通过蒙特卡罗模拟评估了建议近似值的准确性。
Classification of repeated measurements using bias corrected Euclidean distance discriminant function
This paper introduces a novel approach for approximating misclassification probabilities in Euclidean distance classifier when the group means exhibit a bilinear structure such as in the growth curve model first proposed by Potthoff and Roy (Biometrika 51:313–326, 1964). Initially, by leveraging certain statistical relationships, we establish two general results for the improved Euclidean discriminant function in both weighted and unweighted growth curve mean structures. We derive these approximations for the expected misclassification probabilities with respect to the distribution of the improved Euclidean discriminant function. Additionally, we compare the misclassification probabilities of the improved Euclidean discriminant function, the standard Euclidean discriminant function, and the linear discriminant function. It is important to note that in cases where the mean structure is weighted, a higher number of repeated measurements yields better classification results with the improved Euclidean discriminant function and the standard Euclidean discriminant function, allowing for more information to be acquired, as opposed to the linear discriminant function, which performs well with a smaller number of repeated measurements. Furthermore, we evaluate the accuracy of the suggested approximations by Monte Carlo simulations.