具有亚二次方条件的一类受扰动分式哈密顿系统的同次解法

Pub Date : 2023-12-08 DOI:10.1007/s10114-023-2322-4
Ying Luo, Fei Guo, Yan Liu
{"title":"具有亚二次方条件的一类受扰动分式哈密顿系统的同次解法","authors":"Ying Luo,&nbsp;Fei Guo,&nbsp;Yan Liu","doi":"10.1007/s10114-023-2322-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider the following perturbed fractional Hamiltonian systems </p><div><div><span>$$\\left\\{ {\\matrix{{_tD_\\infty ^\\alpha {(_{ - \\infty }}D_t^\\alpha u(t)) + L(t)u(t) = {\\nabla _u}W(t,u(t)) + {\\nabla _u}G(t,u(t)),} \\hfill &amp; {t \\in \\mathbb{R},} \\hfill \\cr {u \\in {H^\\alpha }(\\mathbb{R},{\\mathbb{R}^N}),} \\hfill &amp; {} \\hfill \\cr } } \\right.$$</span></div></div><p> where <span>\\(\\alpha \\in (1/2,1],\\,\\,L \\in C(\\mathbb{R},{\\mathbb{R}^{N \\times N}})\\)</span> is symmetric and not necessarily required to be positive definite, <span>\\(W \\in {C^1}(\\mathbb{R}\\times {\\mathbb{R}^N},\\mathbb{R})\\)</span> is locally subquadratic and locally even near the origin, and perturbed term <span>\\(G \\in {C^1}(\\mathbb{R} \\times {\\mathbb{R}^N},\\mathbb{R})\\)</span> maybe has no parity in <i>u</i>. Utilizing the perturbed method improved by the authors, a sequence of nontrivial homoclinic solutions is obtained, which generalizes previous results.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homoclinic Solutions for a Class of Perturbed Fractional Hamiltonian Systems with Subquadratic Conditions\",\"authors\":\"Ying Luo,&nbsp;Fei Guo,&nbsp;Yan Liu\",\"doi\":\"10.1007/s10114-023-2322-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we consider the following perturbed fractional Hamiltonian systems </p><div><div><span>$$\\\\left\\\\{ {\\\\matrix{{_tD_\\\\infty ^\\\\alpha {(_{ - \\\\infty }}D_t^\\\\alpha u(t)) + L(t)u(t) = {\\\\nabla _u}W(t,u(t)) + {\\\\nabla _u}G(t,u(t)),} \\\\hfill &amp; {t \\\\in \\\\mathbb{R},} \\\\hfill \\\\cr {u \\\\in {H^\\\\alpha }(\\\\mathbb{R},{\\\\mathbb{R}^N}),} \\\\hfill &amp; {} \\\\hfill \\\\cr } } \\\\right.$$</span></div></div><p> where <span>\\\\(\\\\alpha \\\\in (1/2,1],\\\\,\\\\,L \\\\in C(\\\\mathbb{R},{\\\\mathbb{R}^{N \\\\times N}})\\\\)</span> is symmetric and not necessarily required to be positive definite, <span>\\\\(W \\\\in {C^1}(\\\\mathbb{R}\\\\times {\\\\mathbb{R}^N},\\\\mathbb{R})\\\\)</span> is locally subquadratic and locally even near the origin, and perturbed term <span>\\\\(G \\\\in {C^1}(\\\\mathbb{R} \\\\times {\\\\mathbb{R}^N},\\\\mathbb{R})\\\\)</span> maybe has no parity in <i>u</i>. Utilizing the perturbed method improved by the authors, a sequence of nontrivial homoclinic solutions is obtained, which generalizes previous results.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10114-023-2322-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-023-2322-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑以下扰动分数哈密顿系统 $\left\{ {\matrix{{_tD_\infty ^\alpha {(_{ -\infty }}D_t^\alpha u(t))+ L(t)u(t) = {\nabla _u}W(t,u(t))+ {\nabla _u}G(t,u(t)),} \hfill & {t \in \mathbb{R},} \hfill \cr {u \in {H^\alpha }(\mathbb{R},{\mathbb{R}^N}),} \hfill & {}\fill \cr }}\right.$$ 其中 \(α in (1/2,1],\,L in C(\mathbb{R},{\mathbb{R}^{N \times N}})\)是对称的,不一定要求是正定的, \(W in {C^1}(\mathbb{R}\times {\mathbb{R}^{N}、\)在原点附近是局部亚二次方和局部偶数,而扰动项 \(G \in {C^1}(\mathbb{R} \times {\mathbb{R}^N},\mathbb{R})\) 也许在 u 中没有奇偶性。利用作者改进的扰动方法,我们得到了一连串的非难同次解,从而推广了之前的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Homoclinic Solutions for a Class of Perturbed Fractional Hamiltonian Systems with Subquadratic Conditions

In this paper, we consider the following perturbed fractional Hamiltonian systems

$$\left\{ {\matrix{{_tD_\infty ^\alpha {(_{ - \infty }}D_t^\alpha u(t)) + L(t)u(t) = {\nabla _u}W(t,u(t)) + {\nabla _u}G(t,u(t)),} \hfill & {t \in \mathbb{R},} \hfill \cr {u \in {H^\alpha }(\mathbb{R},{\mathbb{R}^N}),} \hfill & {} \hfill \cr } } \right.$$

where \(\alpha \in (1/2,1],\,\,L \in C(\mathbb{R},{\mathbb{R}^{N \times N}})\) is symmetric and not necessarily required to be positive definite, \(W \in {C^1}(\mathbb{R}\times {\mathbb{R}^N},\mathbb{R})\) is locally subquadratic and locally even near the origin, and perturbed term \(G \in {C^1}(\mathbb{R} \times {\mathbb{R}^N},\mathbb{R})\) maybe has no parity in u. Utilizing the perturbed method improved by the authors, a sequence of nontrivial homoclinic solutions is obtained, which generalizes previous results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信