{"title":"具有亚二次方条件的一类受扰动分式哈密顿系统的同次解法","authors":"Ying Luo, Fei Guo, Yan Liu","doi":"10.1007/s10114-023-2322-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider the following perturbed fractional Hamiltonian systems </p><div><div><span>$$\\left\\{ {\\matrix{{_tD_\\infty ^\\alpha {(_{ - \\infty }}D_t^\\alpha u(t)) + L(t)u(t) = {\\nabla _u}W(t,u(t)) + {\\nabla _u}G(t,u(t)),} \\hfill & {t \\in \\mathbb{R},} \\hfill \\cr {u \\in {H^\\alpha }(\\mathbb{R},{\\mathbb{R}^N}),} \\hfill & {} \\hfill \\cr } } \\right.$$</span></div></div><p> where <span>\\(\\alpha \\in (1/2,1],\\,\\,L \\in C(\\mathbb{R},{\\mathbb{R}^{N \\times N}})\\)</span> is symmetric and not necessarily required to be positive definite, <span>\\(W \\in {C^1}(\\mathbb{R}\\times {\\mathbb{R}^N},\\mathbb{R})\\)</span> is locally subquadratic and locally even near the origin, and perturbed term <span>\\(G \\in {C^1}(\\mathbb{R} \\times {\\mathbb{R}^N},\\mathbb{R})\\)</span> maybe has no parity in <i>u</i>. Utilizing the perturbed method improved by the authors, a sequence of nontrivial homoclinic solutions is obtained, which generalizes previous results.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homoclinic Solutions for a Class of Perturbed Fractional Hamiltonian Systems with Subquadratic Conditions\",\"authors\":\"Ying Luo, Fei Guo, Yan Liu\",\"doi\":\"10.1007/s10114-023-2322-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we consider the following perturbed fractional Hamiltonian systems </p><div><div><span>$$\\\\left\\\\{ {\\\\matrix{{_tD_\\\\infty ^\\\\alpha {(_{ - \\\\infty }}D_t^\\\\alpha u(t)) + L(t)u(t) = {\\\\nabla _u}W(t,u(t)) + {\\\\nabla _u}G(t,u(t)),} \\\\hfill & {t \\\\in \\\\mathbb{R},} \\\\hfill \\\\cr {u \\\\in {H^\\\\alpha }(\\\\mathbb{R},{\\\\mathbb{R}^N}),} \\\\hfill & {} \\\\hfill \\\\cr } } \\\\right.$$</span></div></div><p> where <span>\\\\(\\\\alpha \\\\in (1/2,1],\\\\,\\\\,L \\\\in C(\\\\mathbb{R},{\\\\mathbb{R}^{N \\\\times N}})\\\\)</span> is symmetric and not necessarily required to be positive definite, <span>\\\\(W \\\\in {C^1}(\\\\mathbb{R}\\\\times {\\\\mathbb{R}^N},\\\\mathbb{R})\\\\)</span> is locally subquadratic and locally even near the origin, and perturbed term <span>\\\\(G \\\\in {C^1}(\\\\mathbb{R} \\\\times {\\\\mathbb{R}^N},\\\\mathbb{R})\\\\)</span> maybe has no parity in <i>u</i>. Utilizing the perturbed method improved by the authors, a sequence of nontrivial homoclinic solutions is obtained, which generalizes previous results.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10114-023-2322-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-023-2322-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
where \(\alpha \in (1/2,1],\,\,L \in C(\mathbb{R},{\mathbb{R}^{N \times N}})\) is symmetric and not necessarily required to be positive definite, \(W \in {C^1}(\mathbb{R}\times {\mathbb{R}^N},\mathbb{R})\) is locally subquadratic and locally even near the origin, and perturbed term \(G \in {C^1}(\mathbb{R} \times {\mathbb{R}^N},\mathbb{R})\) maybe has no parity in u. Utilizing the perturbed method improved by the authors, a sequence of nontrivial homoclinic solutions is obtained, which generalizes previous results.