分数拉普拉斯波方程的 ADI 方案分裂

Tao Sun, Hai-Wei Sun
{"title":"分数拉普拉斯波方程的 ADI 方案分裂","authors":"Tao Sun, Hai-Wei Sun","doi":"arxiv-2312.06206","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the numerical solution of the two-dimensional\nfractional Laplacian wave equations. After splitting out the Riesz fractional\nderivatives from the fractional Laplacian, we treat the Riesz fractional\nderivatives with an implicit scheme while solving the rest part explicitly.\nThanks to the tensor structure of the Riesz fractional derivatives, a splitting\nalternative direction implicit (S-ADI) scheme is proposed by incorporating an\nADI remainder. Then the Gohberg-Semencul formula, combined with fast Fourier\ntransform, is proposed to solve the derived Toeplitz linear systems at each\ntime integration. Theoretically, we demonstrate that the S-ADI scheme is\nunconditionally stable and possesses second-order accuracy. Finally, numerical\nexperiments are performed to demonstrate the accuracy and efficiency of the\nS-ADI scheme.","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":"98 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Splitting ADI scheme for fractional Laplacian wave equations\",\"authors\":\"Tao Sun, Hai-Wei Sun\",\"doi\":\"arxiv-2312.06206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the numerical solution of the two-dimensional\\nfractional Laplacian wave equations. After splitting out the Riesz fractional\\nderivatives from the fractional Laplacian, we treat the Riesz fractional\\nderivatives with an implicit scheme while solving the rest part explicitly.\\nThanks to the tensor structure of the Riesz fractional derivatives, a splitting\\nalternative direction implicit (S-ADI) scheme is proposed by incorporating an\\nADI remainder. Then the Gohberg-Semencul formula, combined with fast Fourier\\ntransform, is proposed to solve the derived Toeplitz linear systems at each\\ntime integration. Theoretically, we demonstrate that the S-ADI scheme is\\nunconditionally stable and possesses second-order accuracy. Finally, numerical\\nexperiments are performed to demonstrate the accuracy and efficiency of the\\nS-ADI scheme.\",\"PeriodicalId\":501061,\"journal\":{\"name\":\"arXiv - CS - Numerical Analysis\",\"volume\":\"98 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.06206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.06206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了二维分数拉普拉斯波方程的数值解法。从分数拉普拉卡方程中拆分出 Riesz 分数导数后,我们用隐式方案处理 Riesz 分数导数,同时显式求解其余部分。由于 Riesz 分数导数的张量结构,我们提出了一种拆分替代方向隐式(S-ADI)方案,即加入一个 ADI 余数。然后,提出了 Gohberg-Semencul 公式,并结合快速傅里叶变换,在每次积分时求解导出的托普利兹线性系统。理论上,我们证明了 S-ADI 方案是无条件稳定的,并且具有二阶精度。最后,通过数值实验证明了 S-ADI 方案的准确性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Splitting ADI scheme for fractional Laplacian wave equations
In this paper, we investigate the numerical solution of the two-dimensional fractional Laplacian wave equations. After splitting out the Riesz fractional derivatives from the fractional Laplacian, we treat the Riesz fractional derivatives with an implicit scheme while solving the rest part explicitly. Thanks to the tensor structure of the Riesz fractional derivatives, a splitting alternative direction implicit (S-ADI) scheme is proposed by incorporating an ADI remainder. Then the Gohberg-Semencul formula, combined with fast Fourier transform, is proposed to solve the derived Toeplitz linear systems at each time integration. Theoretically, we demonstrate that the S-ADI scheme is unconditionally stable and possesses second-order accuracy. Finally, numerical experiments are performed to demonstrate the accuracy and efficiency of the S-ADI scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信