检验一般 MANOVA 设计中相关矩阵的假设

IF 1.2 4区 数学 Q2 STATISTICS & PROBABILITY
Test Pub Date : 2023-12-12 DOI:10.1007/s11749-023-00906-6
Paavo Sattler, Markus Pauly
{"title":"检验一般 MANOVA 设计中相关矩阵的假设","authors":"Paavo Sattler, Markus Pauly","doi":"10.1007/s11749-023-00906-6","DOIUrl":null,"url":null,"abstract":"<p>Correlation matrices are an essential tool for investigating the dependency structures of random vectors or comparing them. We introduce an approach for testing a variety of null hypotheses that can be formulated based upon the correlation matrix. Examples cover MANOVA-type hypothesis of equal correlation matrices as well as testing for special correlation structures such as sphericity. Apart from existing fourth moments, our approach requires no other assumptions, allowing applications in various settings. To improve the small sample performance, a bootstrap technique is proposed and theoretically justified. Based on this, we also present a procedure to simultaneously test the hypotheses of equal correlation and equal covariance matrices. The performance of all new test statistics is compared with existing procedures through extensive simulations.\n</p>","PeriodicalId":51189,"journal":{"name":"Test","volume":"37 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Testing hypotheses about correlation matrices in general MANOVA designs\",\"authors\":\"Paavo Sattler, Markus Pauly\",\"doi\":\"10.1007/s11749-023-00906-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Correlation matrices are an essential tool for investigating the dependency structures of random vectors or comparing them. We introduce an approach for testing a variety of null hypotheses that can be formulated based upon the correlation matrix. Examples cover MANOVA-type hypothesis of equal correlation matrices as well as testing for special correlation structures such as sphericity. Apart from existing fourth moments, our approach requires no other assumptions, allowing applications in various settings. To improve the small sample performance, a bootstrap technique is proposed and theoretically justified. Based on this, we also present a procedure to simultaneously test the hypotheses of equal correlation and equal covariance matrices. The performance of all new test statistics is compared with existing procedures through extensive simulations.\\n</p>\",\"PeriodicalId\":51189,\"journal\":{\"name\":\"Test\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Test\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11749-023-00906-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Test","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11749-023-00906-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

相关矩阵是研究随机向量的依赖结构或对其进行比较的重要工具。我们介绍了一种基于相关矩阵对各种无效假设进行检验的方法。例子包括 MANOVA 类型的相关矩阵相等假设,以及球度等特殊相关结构的检验。除了现有的第四矩,我们的方法不需要其他假设,因此可以应用于各种场合。为了提高小样本性能,我们提出了一种自举技术,并从理论上进行了论证。在此基础上,我们还提出了同时检验等相关矩阵和等协方差矩阵假设的程序。通过大量模拟,我们将所有新检验统计量的性能与现有程序进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Testing hypotheses about correlation matrices in general MANOVA designs

Testing hypotheses about correlation matrices in general MANOVA designs

Correlation matrices are an essential tool for investigating the dependency structures of random vectors or comparing them. We introduce an approach for testing a variety of null hypotheses that can be formulated based upon the correlation matrix. Examples cover MANOVA-type hypothesis of equal correlation matrices as well as testing for special correlation structures such as sphericity. Apart from existing fourth moments, our approach requires no other assumptions, allowing applications in various settings. To improve the small sample performance, a bootstrap technique is proposed and theoretically justified. Based on this, we also present a procedure to simultaneously test the hypotheses of equal correlation and equal covariance matrices. The performance of all new test statistics is compared with existing procedures through extensive simulations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Test
Test 数学-统计学与概率论
CiteScore
2.20
自引率
7.70%
发文量
41
审稿时长
>12 weeks
期刊介绍: TEST is an international journal of Statistics and Probability, sponsored by the Spanish Society of Statistics and Operations Research. English is the official language of the journal. The emphasis of TEST is placed on papers containing original theoretical contributions of direct or potential value in applications. In this respect, the methodological contents are considered to be crucial for the papers published in TEST, but the practical implications of the methodological aspects are also relevant. Original sound manuscripts on either well-established or emerging areas in the scope of the journal are welcome. One volume is published annually in four issues. In addition to the regular contributions, each issue of TEST contains an invited paper from a world-wide recognized outstanding statistician on an up-to-date challenging topic, including discussions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信