近似等级的通信上限

IF 0.6 4区 计算机科学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Anna Gál, Ridwan Syed
{"title":"近似等级的通信上限","authors":"Anna Gál, Ridwan Syed","doi":"10.1007/s00224-023-10158-4","DOIUrl":null,"url":null,"abstract":"<p>We show that any Boolean function with approximate rank <i>r</i> can be computed by bounded-error quantum protocols without prior entanglement of complexity <span>\\(O( \\sqrt{r} \\log r)\\)</span>. In addition, we show that any Boolean function with approximate rank <i>r</i> and discrepancy <span>\\(\\delta \\)</span> can be computed by deterministic protocols of complexity <i>O</i>(<i>r</i>), and private coin bounded-error randomized protocols of complexity <span>\\(O((\\frac{1}{\\delta })^2 + \\log r)\\)</span>. Our deterministic upper bound in terms of approximate rank is tight up to constant factors, and the dependence on discrepancy in our randomized upper bound is tight up to taking square-roots. Our results can be used to obtain lower bounds on approximate rank. We also obtain a strengthening of Newman’s theorem with respect to approximate rank.</p>","PeriodicalId":22832,"journal":{"name":"Theory of Computing Systems","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Upper Bounds on Communication in Terms of Approximate Rank\",\"authors\":\"Anna Gál, Ridwan Syed\",\"doi\":\"10.1007/s00224-023-10158-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that any Boolean function with approximate rank <i>r</i> can be computed by bounded-error quantum protocols without prior entanglement of complexity <span>\\\\(O( \\\\sqrt{r} \\\\log r)\\\\)</span>. In addition, we show that any Boolean function with approximate rank <i>r</i> and discrepancy <span>\\\\(\\\\delta \\\\)</span> can be computed by deterministic protocols of complexity <i>O</i>(<i>r</i>), and private coin bounded-error randomized protocols of complexity <span>\\\\(O((\\\\frac{1}{\\\\delta })^2 + \\\\log r)\\\\)</span>. Our deterministic upper bound in terms of approximate rank is tight up to constant factors, and the dependence on discrepancy in our randomized upper bound is tight up to taking square-roots. Our results can be used to obtain lower bounds on approximate rank. We also obtain a strengthening of Newman’s theorem with respect to approximate rank.</p>\",\"PeriodicalId\":22832,\"journal\":{\"name\":\"Theory of Computing Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory of Computing Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00224-023-10158-4\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Computing Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00224-023-10158-4","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,任何具有近似秩r的布尔函数都可以通过复杂度为(O( \sqrt{r} \log r)\)的无先验纠缠的有界错误量子协议来计算。此外,我们还证明,任何具有近似秩r和差分\(\delta \)的布尔函数都可以通过复杂度为O(r)的确定性协议和复杂度为\(O((\frac{1}{\delta })^2 + \log r)\的私有硬币有界错误随机协议来计算。)我们用近似等级表示的确定性上界在常数因子以内都是紧密的,而我们的随机上界中对差异的依赖在取平方根以内都是紧密的。我们的结果可以用来获得近似秩的下界。我们还得到了纽曼定理在近似秩方面的加强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Upper Bounds on Communication in Terms of Approximate Rank

We show that any Boolean function with approximate rank r can be computed by bounded-error quantum protocols without prior entanglement of complexity \(O( \sqrt{r} \log r)\). In addition, we show that any Boolean function with approximate rank r and discrepancy \(\delta \) can be computed by deterministic protocols of complexity O(r), and private coin bounded-error randomized protocols of complexity \(O((\frac{1}{\delta })^2 + \log r)\). Our deterministic upper bound in terms of approximate rank is tight up to constant factors, and the dependence on discrepancy in our randomized upper bound is tight up to taking square-roots. Our results can be used to obtain lower bounds on approximate rank. We also obtain a strengthening of Newman’s theorem with respect to approximate rank.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theory of Computing Systems
Theory of Computing Systems 工程技术-计算机:理论方法
CiteScore
1.90
自引率
0.00%
发文量
36
审稿时长
6-12 weeks
期刊介绍: TOCS is devoted to publishing original research from all areas of theoretical computer science, ranging from foundational areas such as computational complexity, to fundamental areas such as algorithms and data structures, to focused areas such as parallel and distributed algorithms and architectures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信