涉及对数拉普拉卡方的 Lane-Emden 系统正解的对称性

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Rong Zhang, Vishvesh Kumar, Michael Ruzhansky
{"title":"涉及对数拉普拉卡方的 Lane-Emden 系统正解的对称性","authors":"Rong Zhang,&nbsp;Vishvesh Kumar,&nbsp;Michael Ruzhansky","doi":"10.1007/s10440-023-00627-w","DOIUrl":null,"url":null,"abstract":"<div><p>We study the Lane-Emden system involving the logarithmic Laplacian: </p><div><div><span>$$ \\textstyle\\begin{cases} \\ \\mathcal{L}_{\\Delta }u(x)=v^{p}(x) ,&amp; x\\in \\mathbb{R}^{n}, \\\\ \\ \\mathcal{L}_{\\Delta }v(x)=u^{q}(x) ,&amp; x\\in \\mathbb{R}^{n}, \\end{cases} $$</span></div></div><p> where <span>\\(p,q&gt;1\\)</span>, <span>\\(n\\geq 2\\)</span> and <span>\\(\\mathcal{L}_{\\Delta }\\)</span> denotes the logarithmic Laplacian arising as a formal derivative <span>\\(\\partial _{s}|_{s=0}(-\\Delta )^{s}\\)</span> of the fractional Laplacian <span>\\((-\\Delta )^{s}\\)</span> at <span>\\(s=0\\)</span>. By using a direct method of moving planes for the logarithmic Laplacian, we obtain the symmetry and monotonicity of the positive solutions to the Lane-Emden system. We also establish some key ingredients needed in order to apply the method of moving planes such as the maximum principle for anti-symmetric functions, the narrow region principle, and decay at infinity. Further, we discuss such results for a generalized system of the Lane-Emden type involving the logarithmic Laplacian.</p></div>","PeriodicalId":53132,"journal":{"name":"Acta Applicandae Mathematicae","volume":"188 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symmetry of Positive Solutions for Lane-Emden Systems Involving the Logarithmic Laplacian\",\"authors\":\"Rong Zhang,&nbsp;Vishvesh Kumar,&nbsp;Michael Ruzhansky\",\"doi\":\"10.1007/s10440-023-00627-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the Lane-Emden system involving the logarithmic Laplacian: </p><div><div><span>$$ \\\\textstyle\\\\begin{cases} \\\\ \\\\mathcal{L}_{\\\\Delta }u(x)=v^{p}(x) ,&amp; x\\\\in \\\\mathbb{R}^{n}, \\\\\\\\ \\\\ \\\\mathcal{L}_{\\\\Delta }v(x)=u^{q}(x) ,&amp; x\\\\in \\\\mathbb{R}^{n}, \\\\end{cases} $$</span></div></div><p> where <span>\\\\(p,q&gt;1\\\\)</span>, <span>\\\\(n\\\\geq 2\\\\)</span> and <span>\\\\(\\\\mathcal{L}_{\\\\Delta }\\\\)</span> denotes the logarithmic Laplacian arising as a formal derivative <span>\\\\(\\\\partial _{s}|_{s=0}(-\\\\Delta )^{s}\\\\)</span> of the fractional Laplacian <span>\\\\((-\\\\Delta )^{s}\\\\)</span> at <span>\\\\(s=0\\\\)</span>. By using a direct method of moving planes for the logarithmic Laplacian, we obtain the symmetry and monotonicity of the positive solutions to the Lane-Emden system. We also establish some key ingredients needed in order to apply the method of moving planes such as the maximum principle for anti-symmetric functions, the narrow region principle, and decay at infinity. Further, we discuss such results for a generalized system of the Lane-Emden type involving the logarithmic Laplacian.</p></div>\",\"PeriodicalId\":53132,\"journal\":{\"name\":\"Acta Applicandae Mathematicae\",\"volume\":\"188 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Applicandae Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10440-023-00627-w\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10440-023-00627-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了涉及对数拉普拉奇的 Lane-Emden 系统:$$ (textstyle/begin{cases})。\mathcal{L}_{\Delta }u(x)=v^{p}(x) ,& x\in \mathbb{R}^{n}, \\mathcal{L}_{\Delta }v(x)=u^{q}(x) ,& x\in \mathbb{R}^{n}, \end{cases} $$ 其中 \(p,q>;1\), \(n\geq 2\) and\(\mathcal{L}_{\Delta }\) 表示在 \(s=0\) 时分数拉普拉斯函数 \((-\Delta )^{s}\) 的形式导数 \(\partial _{s}|_{s=0}(-\Delta )^{s}\) 的对数拉普拉斯函数。通过使用对数拉普拉奇的直接平面移动方法,我们得到了 Lane-Emden 系统正解的对称性和单调性。我们还建立了应用平面移动方法所需的一些关键要素,如反对称函数的最大值原理、窄区域原理和无穷衰减。此外,我们还讨论了涉及对数拉普拉奇的 Lane-Emden 类型广义系统的此类结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symmetry of Positive Solutions for Lane-Emden Systems Involving the Logarithmic Laplacian

We study the Lane-Emden system involving the logarithmic Laplacian:

$$ \textstyle\begin{cases} \ \mathcal{L}_{\Delta }u(x)=v^{p}(x) ,& x\in \mathbb{R}^{n}, \\ \ \mathcal{L}_{\Delta }v(x)=u^{q}(x) ,& x\in \mathbb{R}^{n}, \end{cases} $$

where \(p,q>1\), \(n\geq 2\) and \(\mathcal{L}_{\Delta }\) denotes the logarithmic Laplacian arising as a formal derivative \(\partial _{s}|_{s=0}(-\Delta )^{s}\) of the fractional Laplacian \((-\Delta )^{s}\) at \(s=0\). By using a direct method of moving planes for the logarithmic Laplacian, we obtain the symmetry and monotonicity of the positive solutions to the Lane-Emden system. We also establish some key ingredients needed in order to apply the method of moving planes such as the maximum principle for anti-symmetric functions, the narrow region principle, and decay at infinity. Further, we discuss such results for a generalized system of the Lane-Emden type involving the logarithmic Laplacian.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Applicandae Mathematicae
Acta Applicandae Mathematicae 数学-应用数学
CiteScore
2.80
自引率
6.20%
发文量
77
审稿时长
16.2 months
期刊介绍: Acta Applicandae Mathematicae is devoted to the art and techniques of applying mathematics and the development of new, applicable mathematical methods. Covering a large spectrum from modeling to qualitative analysis and computational methods, Acta Applicandae Mathematicae contains papers on different aspects of the relationship between theory and applications, ranging from descriptive papers on actual applications meeting contemporary mathematical standards to proofs of new and deep theorems in applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信