Melina Wertnik, Lukas Wacker, Stefano M. Bernasconi, Negar Haghipour, Timothy I Eglinton, Caroline Welte
{"title":"用于 14C 和 δ13C 复合测量的通用气体接口","authors":"Melina Wertnik, Lukas Wacker, Stefano M. Bernasconi, Negar Haghipour, Timothy I Eglinton, Caroline Welte","doi":"10.1017/rdc.2023.113","DOIUrl":null,"url":null,"abstract":"<p>While simultaneous radiocarbon and δ<span>13</span>C measurements have been available for organic materials (by accelerator mass spectrometry, AMS, and isotope ratio mass spectrometry, IRMS, respectively), this has not been possible for carbonates until now. Using an existing interface for gas ion source AMS measurements, we developed a prototype for a universal gas interface that allows simultaneous measurement of both carbon isotope ratios from potentially any source of CO<span>2</span>. First results obtained from reference materials (IAEA-C6, OxaII, PhA, IAEA-C1, IAEA-C2, ETH-4) show that for both organic as well as carbonate samples, the precision of radiocarbon measurements in the coupled mode is comparable to routine standalone AMS measurements. For IRMS δ<span>13</span>C measurements, the performance for different materials shows more variation with precisions ranging from 0.07‰ to 0.47‰. However, both organic materials and carbonates can achieve precisions as good as 0.13‰. Once fully automated, the method shows potential for filling the gap of simultaneous carbon isotope measurements for non-organic materials.</p>","PeriodicalId":21020,"journal":{"name":"Radiocarbon","volume":"87 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A UNIVERSAL GAS INTERFACE FOR SIMULTANEOUS 14C AND δ13C MEASUREMENTS\",\"authors\":\"Melina Wertnik, Lukas Wacker, Stefano M. Bernasconi, Negar Haghipour, Timothy I Eglinton, Caroline Welte\",\"doi\":\"10.1017/rdc.2023.113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>While simultaneous radiocarbon and δ<span>13</span>C measurements have been available for organic materials (by accelerator mass spectrometry, AMS, and isotope ratio mass spectrometry, IRMS, respectively), this has not been possible for carbonates until now. Using an existing interface for gas ion source AMS measurements, we developed a prototype for a universal gas interface that allows simultaneous measurement of both carbon isotope ratios from potentially any source of CO<span>2</span>. First results obtained from reference materials (IAEA-C6, OxaII, PhA, IAEA-C1, IAEA-C2, ETH-4) show that for both organic as well as carbonate samples, the precision of radiocarbon measurements in the coupled mode is comparable to routine standalone AMS measurements. For IRMS δ<span>13</span>C measurements, the performance for different materials shows more variation with precisions ranging from 0.07‰ to 0.47‰. However, both organic materials and carbonates can achieve precisions as good as 0.13‰. Once fully automated, the method shows potential for filling the gap of simultaneous carbon isotope measurements for non-organic materials.</p>\",\"PeriodicalId\":21020,\"journal\":{\"name\":\"Radiocarbon\",\"volume\":\"87 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiocarbon\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1017/rdc.2023.113\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiocarbon","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/rdc.2023.113","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
A UNIVERSAL GAS INTERFACE FOR SIMULTANEOUS 14C AND δ13C MEASUREMENTS
While simultaneous radiocarbon and δ13C measurements have been available for organic materials (by accelerator mass spectrometry, AMS, and isotope ratio mass spectrometry, IRMS, respectively), this has not been possible for carbonates until now. Using an existing interface for gas ion source AMS measurements, we developed a prototype for a universal gas interface that allows simultaneous measurement of both carbon isotope ratios from potentially any source of CO2. First results obtained from reference materials (IAEA-C6, OxaII, PhA, IAEA-C1, IAEA-C2, ETH-4) show that for both organic as well as carbonate samples, the precision of radiocarbon measurements in the coupled mode is comparable to routine standalone AMS measurements. For IRMS δ13C measurements, the performance for different materials shows more variation with precisions ranging from 0.07‰ to 0.47‰. However, both organic materials and carbonates can achieve precisions as good as 0.13‰. Once fully automated, the method shows potential for filling the gap of simultaneous carbon isotope measurements for non-organic materials.
期刊介绍:
Radiocarbon serves as the leading international journal for technical and interpretive articles, date lists, and advancements in 14C and other radioisotopes relevant to archaeological, geophysical, oceanographic, and related dating methods. Established in 1959, it has published numerous seminal works and hosts the triennial International Radiocarbon Conference proceedings. The journal also features occasional special issues. Submissions encompass regular articles such as research reports, technical descriptions, and date lists, along with comments, letters to the editor, book reviews, and laboratory lists.