Muhammad Danial Shafqat, Nasir Mahmood, Jehan Akbar, Muhammad Zubair, Yehia Massoud, and Muhammad Qasim Mehmood
{"title":"通过三角函数生成同心完美涡流束的宽带多功能元表面","authors":"Muhammad Danial Shafqat, Nasir Mahmood, Jehan Akbar, Muhammad Zubair, Yehia Massoud, and Muhammad Qasim Mehmood","doi":"10.1364/ome.510015","DOIUrl":null,"url":null,"abstract":"Perfect vortex (PV) beams exhibiting topological charge-insensitive annular intensity distribution appear as a striking hotspot for significant advances in optical communication and quantum optics and have great potential to fulfill the requirements of futuristic optical communication systems. The recently developed planar photonics devices possessed an unprecedented ability for complex wavefront shaping at the micron scale; however, the limited working bandwidth and abruptly diverging light behavior of the current PV beam-generating planar photonics devices roadblock their applicability in practical systems. This work demonstrates a single-cell driven broadband planar photonics platform to realize the nondiffracting-type PV beams for the visible spectrum. These PV beams exhibit long propagating constant-sized doughnuts for different topological charges and exhibit expected broadband response. The proposed concept is verified by numerically studying multiple meta-devices capable of generating nondiffracting-type PV beams. The presented photonics platform may bring considerable advances in real-life applications like machine vision.","PeriodicalId":19548,"journal":{"name":"Optical Materials Express","volume":"38 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Broadband multifunctional metasurfaces for concentric perfect vortex beam generation via trigonometric functions\",\"authors\":\"Muhammad Danial Shafqat, Nasir Mahmood, Jehan Akbar, Muhammad Zubair, Yehia Massoud, and Muhammad Qasim Mehmood\",\"doi\":\"10.1364/ome.510015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Perfect vortex (PV) beams exhibiting topological charge-insensitive annular intensity distribution appear as a striking hotspot for significant advances in optical communication and quantum optics and have great potential to fulfill the requirements of futuristic optical communication systems. The recently developed planar photonics devices possessed an unprecedented ability for complex wavefront shaping at the micron scale; however, the limited working bandwidth and abruptly diverging light behavior of the current PV beam-generating planar photonics devices roadblock their applicability in practical systems. This work demonstrates a single-cell driven broadband planar photonics platform to realize the nondiffracting-type PV beams for the visible spectrum. These PV beams exhibit long propagating constant-sized doughnuts for different topological charges and exhibit expected broadband response. The proposed concept is verified by numerically studying multiple meta-devices capable of generating nondiffracting-type PV beams. The presented photonics platform may bring considerable advances in real-life applications like machine vision.\",\"PeriodicalId\":19548,\"journal\":{\"name\":\"Optical Materials Express\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Materials Express\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1364/ome.510015\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Materials Express","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1364/ome.510015","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Broadband multifunctional metasurfaces for concentric perfect vortex beam generation via trigonometric functions
Perfect vortex (PV) beams exhibiting topological charge-insensitive annular intensity distribution appear as a striking hotspot for significant advances in optical communication and quantum optics and have great potential to fulfill the requirements of futuristic optical communication systems. The recently developed planar photonics devices possessed an unprecedented ability for complex wavefront shaping at the micron scale; however, the limited working bandwidth and abruptly diverging light behavior of the current PV beam-generating planar photonics devices roadblock their applicability in practical systems. This work demonstrates a single-cell driven broadband planar photonics platform to realize the nondiffracting-type PV beams for the visible spectrum. These PV beams exhibit long propagating constant-sized doughnuts for different topological charges and exhibit expected broadband response. The proposed concept is verified by numerically studying multiple meta-devices capable of generating nondiffracting-type PV beams. The presented photonics platform may bring considerable advances in real-life applications like machine vision.
期刊介绍:
The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community.
Optical Materials Express (OMEx), OSA''s open-access, rapid-review journal, primarily emphasizes advances in both conventional and novel optical materials, their properties, theory and modeling, synthesis and fabrication approaches for optics and photonics; how such materials contribute to novel optical behavior; and how they enable new or improved optical devices. The journal covers a full range of topics, including, but not limited to:
Artificially engineered optical structures
Biomaterials
Optical detector materials
Optical storage media
Materials for integrated optics
Nonlinear optical materials
Laser materials
Metamaterials
Nanomaterials
Organics and polymers
Soft materials
IR materials
Materials for fiber optics
Hybrid technologies
Materials for quantum photonics
Optical Materials Express considers original research articles, feature issue contributions, invited reviews, and comments on published articles. The Journal also publishes occasional short, timely opinion articles from experts and thought-leaders in the field on current or emerging topic areas that are generating significant interest.