通过层次推理进行多被告法律判决预测

Yougang Lyu, Jitai Hao, Zihan Wang, Kai Zhao, Shen Gao, Pengjie Ren, Zhumin Chen, Fang Wang, Zhaochun Ren
{"title":"通过层次推理进行多被告法律判决预测","authors":"Yougang Lyu, Jitai Hao, Zihan Wang, Kai Zhao, Shen Gao, Pengjie Ren, Zhumin Chen, Fang Wang, Zhaochun Ren","doi":"arxiv-2312.05762","DOIUrl":null,"url":null,"abstract":"Multiple defendants in a criminal fact description generally exhibit complex\ninteractions, and cannot be well handled by existing Legal Judgment Prediction\n(LJP) methods which focus on predicting judgment results (e.g., law articles,\ncharges, and terms of penalty) for single-defendant cases. To address this\nproblem, we propose the task of multi-defendant LJP, which aims to\nautomatically predict the judgment results for each defendant of\nmulti-defendant cases. Two challenges arise with the task of multi-defendant\nLJP: (1) indistinguishable judgment results among various defendants; and (2)\nthe lack of a real-world dataset for training and evaluation. To tackle the\nfirst challenge, we formalize the multi-defendant judgment process as\nhierarchical reasoning chains and introduce a multi-defendant LJP method, named\nHierarchical Reasoning Network (HRN), which follows the hierarchical reasoning\nchains to determine criminal relationships, sentencing circumstances, law\narticles, charges, and terms of penalty for each defendant. To tackle the\nsecond challenge, we collect a real-world multi-defendant LJP dataset, namely\nMultiLJP, to accelerate the relevant research in the future. Extensive\nexperiments on MultiLJP verify the effectiveness of our proposed HRN.","PeriodicalId":501030,"journal":{"name":"arXiv - CS - Computation and Language","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Defendant Legal Judgment Prediction via Hierarchical Reasoning\",\"authors\":\"Yougang Lyu, Jitai Hao, Zihan Wang, Kai Zhao, Shen Gao, Pengjie Ren, Zhumin Chen, Fang Wang, Zhaochun Ren\",\"doi\":\"arxiv-2312.05762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiple defendants in a criminal fact description generally exhibit complex\\ninteractions, and cannot be well handled by existing Legal Judgment Prediction\\n(LJP) methods which focus on predicting judgment results (e.g., law articles,\\ncharges, and terms of penalty) for single-defendant cases. To address this\\nproblem, we propose the task of multi-defendant LJP, which aims to\\nautomatically predict the judgment results for each defendant of\\nmulti-defendant cases. Two challenges arise with the task of multi-defendant\\nLJP: (1) indistinguishable judgment results among various defendants; and (2)\\nthe lack of a real-world dataset for training and evaluation. To tackle the\\nfirst challenge, we formalize the multi-defendant judgment process as\\nhierarchical reasoning chains and introduce a multi-defendant LJP method, named\\nHierarchical Reasoning Network (HRN), which follows the hierarchical reasoning\\nchains to determine criminal relationships, sentencing circumstances, law\\narticles, charges, and terms of penalty for each defendant. To tackle the\\nsecond challenge, we collect a real-world multi-defendant LJP dataset, namely\\nMultiLJP, to accelerate the relevant research in the future. Extensive\\nexperiments on MultiLJP verify the effectiveness of our proposed HRN.\",\"PeriodicalId\":501030,\"journal\":{\"name\":\"arXiv - CS - Computation and Language\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computation and Language\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.05762\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computation and Language","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.05762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在刑事事实描述中,多名被告一般会表现出复杂的互动关系,现有的法律判决预测(LJP)方法无法很好地处理这些问题,因为现有的法律判决预测方法侧重于预测单个被告案件的判决结果(如法律条文、指控和刑罚条款)。为了解决这个问题,我们提出了多被告 LJP 任务,旨在自动预测多被告案件中每个被告的判决结果。多被告 LJP 任务面临两个挑战:(1) 不同被告之间的判决结果难以区分;(2) 缺乏用于训练和评估的真实世界数据集。针对第一个挑战,我们将多被告人判决过程形式化为层次推理链,并引入一种名为层次推理网络(HRN)的多被告人 LJP 方法,该方法按照层次推理链确定每个被告人的犯罪关系、量刑情节、法律条文、罪名和刑罚条件。为了应对第二个挑战,我们收集了一个真实世界的多被告 LJP 数据集,即 MultiLJP,以加速未来的相关研究。在 MultiLJP 上进行的广泛实验验证了我们提出的 HRN 的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Defendant Legal Judgment Prediction via Hierarchical Reasoning
Multiple defendants in a criminal fact description generally exhibit complex interactions, and cannot be well handled by existing Legal Judgment Prediction (LJP) methods which focus on predicting judgment results (e.g., law articles, charges, and terms of penalty) for single-defendant cases. To address this problem, we propose the task of multi-defendant LJP, which aims to automatically predict the judgment results for each defendant of multi-defendant cases. Two challenges arise with the task of multi-defendant LJP: (1) indistinguishable judgment results among various defendants; and (2) the lack of a real-world dataset for training and evaluation. To tackle the first challenge, we formalize the multi-defendant judgment process as hierarchical reasoning chains and introduce a multi-defendant LJP method, named Hierarchical Reasoning Network (HRN), which follows the hierarchical reasoning chains to determine criminal relationships, sentencing circumstances, law articles, charges, and terms of penalty for each defendant. To tackle the second challenge, we collect a real-world multi-defendant LJP dataset, namely MultiLJP, to accelerate the relevant research in the future. Extensive experiments on MultiLJP verify the effectiveness of our proposed HRN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信