论带德里赫特边界条件的纳维-斯托克斯-傅里叶系统的弱(量值)-强唯一性

Nilasis Chaudhuri
{"title":"论带德里赫特边界条件的纳维-斯托克斯-傅里叶系统的弱(量值)-强唯一性","authors":"Nilasis Chaudhuri","doi":"10.1007/s00030-023-00895-3","DOIUrl":null,"url":null,"abstract":"<p>In this article, our goal is to define a measure valued solution of compressible Navier–Stokes–Fourier system for a heat conducting fluid with Dirichlet boundary condition for temperature in a bounded domain. The definition will be based on the weak formulation of entropy inequality and ballistic energy inequality. Moreover, we obtain the <i>weak (measure valued)–strong uniqueness</i> property of this solution with the help of relative energy.\n</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On weak (measure valued)–strong uniqueness for Navier–Stokes–Fourier system with Dirichlet boundary condition\",\"authors\":\"Nilasis Chaudhuri\",\"doi\":\"10.1007/s00030-023-00895-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, our goal is to define a measure valued solution of compressible Navier–Stokes–Fourier system for a heat conducting fluid with Dirichlet boundary condition for temperature in a bounded domain. The definition will be based on the weak formulation of entropy inequality and ballistic energy inequality. Moreover, we obtain the <i>weak (measure valued)–strong uniqueness</i> property of this solution with the help of relative energy.\\n</p>\",\"PeriodicalId\":501665,\"journal\":{\"name\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00030-023-00895-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-023-00895-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们的目标是定义有界域中温度边界条件下导热流体的可压缩 Navier-Stokes-Fourier 系统的量值解。定义将基于熵不等式和弹道能量不等式的弱表述。此外,我们还借助相对能量获得了该解的弱(度量值)-强唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On weak (measure valued)–strong uniqueness for Navier–Stokes–Fourier system with Dirichlet boundary condition

In this article, our goal is to define a measure valued solution of compressible Navier–Stokes–Fourier system for a heat conducting fluid with Dirichlet boundary condition for temperature in a bounded domain. The definition will be based on the weak formulation of entropy inequality and ballistic energy inequality. Moreover, we obtain the weak (measure valued)–strong uniqueness property of this solution with the help of relative energy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信