半离散双曲型方程的分类。五阶对称的情况

R. N. Garifullin
{"title":"半离散双曲型方程的分类。五阶对称的情况","authors":"R. N. Garifullin","doi":"arxiv-2312.03745","DOIUrl":null,"url":null,"abstract":"The work deals with the qualification of semidiscrete hyperbolic type\nequations. We study a class of equations of the form\n$$\\frac{du_{n+1}}{dx}=f\\left(\\frac{du_{n}}{dx},u_{n+1},u_{n}\\right),$$ here the\nunknown function $u_n(x)$ depends on one discrete $n$ and one continuous $x$\nvariables. Qualification is based on the requirement of the existence of higher\nsymmetries. The case is considered when the symmetry is of order 5 in\ncontinuous directions. As a result, a list of four equations with the required\nconditions is obtained. For one of the found equations, a Lax representation is\nconstructed.","PeriodicalId":501592,"journal":{"name":"arXiv - PHYS - Exactly Solvable and Integrable Systems","volume":"88 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of semidiscrete hyperbolic type equations. The case of fifth order symmetries\",\"authors\":\"R. N. Garifullin\",\"doi\":\"arxiv-2312.03745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The work deals with the qualification of semidiscrete hyperbolic type\\nequations. We study a class of equations of the form\\n$$\\\\frac{du_{n+1}}{dx}=f\\\\left(\\\\frac{du_{n}}{dx},u_{n+1},u_{n}\\\\right),$$ here the\\nunknown function $u_n(x)$ depends on one discrete $n$ and one continuous $x$\\nvariables. Qualification is based on the requirement of the existence of higher\\nsymmetries. The case is considered when the symmetry is of order 5 in\\ncontinuous directions. As a result, a list of four equations with the required\\nconditions is obtained. For one of the found equations, a Lax representation is\\nconstructed.\",\"PeriodicalId\":501592,\"journal\":{\"name\":\"arXiv - PHYS - Exactly Solvable and Integrable Systems\",\"volume\":\"88 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Exactly Solvable and Integrable Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.03745\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Exactly Solvable and Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.03745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究涉及半离散双曲型方程的定性。我们研究了一类形式为$$\frac{du_{n+1}}{dx}=f/left(\frac{du_{n}}{dx},u_{n+1},u_{n}/right)的方程,$$这里未知函数$u_n(x)$取决于一个离散变量$n$和一个连续变量$x$。限定基于高对称性存在的要求。我们考虑了对称性为 5 阶不连续方向的情况。结果,得到了具有所需条件的四个方程的列表。针对其中一个方程,构建了一个 Lax 表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of semidiscrete hyperbolic type equations. The case of fifth order symmetries
The work deals with the qualification of semidiscrete hyperbolic type equations. We study a class of equations of the form $$\frac{du_{n+1}}{dx}=f\left(\frac{du_{n}}{dx},u_{n+1},u_{n}\right),$$ here the unknown function $u_n(x)$ depends on one discrete $n$ and one continuous $x$ variables. Qualification is based on the requirement of the existence of higher symmetries. The case is considered when the symmetry is of order 5 in continuous directions. As a result, a list of four equations with the required conditions is obtained. For one of the found equations, a Lax representation is constructed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信