{"title":"某些巴拿赫函数空间的平滑度模量","authors":"Ramazan Akgün","doi":"10.1007/s11253-023-02253-z","DOIUrl":null,"url":null,"abstract":"<p>Based on the Steklov operator, we consider a modulus of smoothness for functions in some Banach function spaces, which can be not translation invariant, and establish its main properties. A constructive characterization of the Lipschitz class is obtained with the help of the Jackson-type direct theorem and the inverse theorem on trigonometric approximation. As an application, we present several examples of related (weighted) function spaces.</p>","PeriodicalId":49406,"journal":{"name":"Ukrainian Mathematical Journal","volume":"170 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Modulus of Smoothness for Some Banach Function Spaces\",\"authors\":\"Ramazan Akgün\",\"doi\":\"10.1007/s11253-023-02253-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Based on the Steklov operator, we consider a modulus of smoothness for functions in some Banach function spaces, which can be not translation invariant, and establish its main properties. A constructive characterization of the Lipschitz class is obtained with the help of the Jackson-type direct theorem and the inverse theorem on trigonometric approximation. As an application, we present several examples of related (weighted) function spaces.</p>\",\"PeriodicalId\":49406,\"journal\":{\"name\":\"Ukrainian Mathematical Journal\",\"volume\":\"170 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ukrainian Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11253-023-02253-z\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-023-02253-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
A Modulus of Smoothness for Some Banach Function Spaces
Based on the Steklov operator, we consider a modulus of smoothness for functions in some Banach function spaces, which can be not translation invariant, and establish its main properties. A constructive characterization of the Lipschitz class is obtained with the help of the Jackson-type direct theorem and the inverse theorem on trigonometric approximation. As an application, we present several examples of related (weighted) function spaces.
期刊介绍:
Ukrainian Mathematical Journal publishes articles and brief communications on various areas of pure and applied mathematics and contains sections devoted to scientific information, bibliography, and reviews of current problems. It features contributions from researchers from the Ukrainian Mathematics Institute, the major scientific centers of the Ukraine and other countries.
Ukrainian Mathematical Journal is a translation of the peer-reviewed journal Ukrains’kyi Matematychnyi Zhurnal, a publication of the Institute of Mathematics of the National Academy of Sciences of Ukraine.