{"title":"基于扬声器泄露的磁性侧信道信号的窃听系统","authors":"Qianru Liao, Yongzhi Huang, Yandao Huang, Kaishun Wu","doi":"10.1145/3637063","DOIUrl":null,"url":null,"abstract":"<p>The use of speakers in electronic devices has become widespread, but the security risks associated with micro-speakers, such as earphones, are often overlooked. Many assume that soundproof barriers can prevent sound leakage and protect privacy. This paper presents the prototype MagEar, an eavesdropping system that exploits magnetic side-channel signals leaked by a micro-speaker to restore intelligible human speech. MagEar outperforms some high-precision magnetometers in detecting magnetic fields at the nanotesla level. Even at a distance of 60 cm, it can recover high-quality audio with a 90% similarity to the original audio. Moreover, the MagEar prototype is portable and can be concealed within a headset housing. We have implemented MagEar as a proof-of-concept system and conducted multiple case studies on the eavesdropping of various speaker-embedded devices, including earphones. The recovered speech can be transcribed using automatic speech recognition techniques, even when obstructed by soundproof walls. It is our aspiration that our work can prompt manufacturers to reconsider the security vulnerabilities of speakers.</p>","PeriodicalId":50910,"journal":{"name":"ACM Transactions on Sensor Networks","volume":"1 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Eavesdropping System Based on Magnetic Side-Channel Signals Leaked by Speakers\",\"authors\":\"Qianru Liao, Yongzhi Huang, Yandao Huang, Kaishun Wu\",\"doi\":\"10.1145/3637063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The use of speakers in electronic devices has become widespread, but the security risks associated with micro-speakers, such as earphones, are often overlooked. Many assume that soundproof barriers can prevent sound leakage and protect privacy. This paper presents the prototype MagEar, an eavesdropping system that exploits magnetic side-channel signals leaked by a micro-speaker to restore intelligible human speech. MagEar outperforms some high-precision magnetometers in detecting magnetic fields at the nanotesla level. Even at a distance of 60 cm, it can recover high-quality audio with a 90% similarity to the original audio. Moreover, the MagEar prototype is portable and can be concealed within a headset housing. We have implemented MagEar as a proof-of-concept system and conducted multiple case studies on the eavesdropping of various speaker-embedded devices, including earphones. The recovered speech can be transcribed using automatic speech recognition techniques, even when obstructed by soundproof walls. It is our aspiration that our work can prompt manufacturers to reconsider the security vulnerabilities of speakers.</p>\",\"PeriodicalId\":50910,\"journal\":{\"name\":\"ACM Transactions on Sensor Networks\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Sensor Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3637063\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Sensor Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3637063","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
An Eavesdropping System Based on Magnetic Side-Channel Signals Leaked by Speakers
The use of speakers in electronic devices has become widespread, but the security risks associated with micro-speakers, such as earphones, are often overlooked. Many assume that soundproof barriers can prevent sound leakage and protect privacy. This paper presents the prototype MagEar, an eavesdropping system that exploits magnetic side-channel signals leaked by a micro-speaker to restore intelligible human speech. MagEar outperforms some high-precision magnetometers in detecting magnetic fields at the nanotesla level. Even at a distance of 60 cm, it can recover high-quality audio with a 90% similarity to the original audio. Moreover, the MagEar prototype is portable and can be concealed within a headset housing. We have implemented MagEar as a proof-of-concept system and conducted multiple case studies on the eavesdropping of various speaker-embedded devices, including earphones. The recovered speech can be transcribed using automatic speech recognition techniques, even when obstructed by soundproof walls. It is our aspiration that our work can prompt manufacturers to reconsider the security vulnerabilities of speakers.
期刊介绍:
ACM Transactions on Sensor Networks (TOSN) is a central publication by the ACM in the interdisciplinary area of sensor networks spanning a broad discipline from signal processing, networking and protocols, embedded systems, information management, to distributed algorithms. It covers research contributions that introduce new concepts, techniques, analyses, or architectures, as well as applied contributions that report on development of new tools and systems or experiences and experiments with high-impact, innovative applications. The Transactions places special attention on contributions to systemic approaches to sensor networks as well as fundamental contributions.