{"title":"采用无锁定异步自适应随机梯度下降算法的一维 CNN 用于天文光谱分类","authors":"Chuandong Qin, Yu Cao","doi":"10.1007/s00607-023-01240-3","DOIUrl":null,"url":null,"abstract":"<p>At present, large-scale sky surveys have obtained a large volume of stellar spectra. An efficient classification algorithm is of great importance to the practice of astronomical research. In this paper, we propose a novel parallel optimization algorithm based on a lock-free and shared-memory environment to solve the model for astronomical spectra class. Firstly, the SMOTE-TOMEK and RobustScaler are introduced to use for class balancing and data normalization. Secondly, 1-Dimensional Convolutional Neural Networks (1-D CNN) with L2-norm loss function is utilized as a classifier. Finally, LFA-SGD, LFA-Adagrad, LFA-RMSprop and LFA-Adam algorithms are proposed and applied to the classifier solution. The Lock-Free and shared-memory parallel Asynchronous environment (LFA) relies on GPU multiprocessing, allowing the algorithm to fully utilize the multi-core resources of the computer. Due to its sparsity, the convergence speed is significantly faster. The experimental results show that LFA-SGD algorithm and its variants achieved state-of-the-art accuracy and efficiency for astronomical spectra class.</p>","PeriodicalId":10718,"journal":{"name":"Computing","volume":"59 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"1-D CNNs with lock-free asynchronous adaptive stochastic gradient descent algorithm for classification of astronomical spectra\",\"authors\":\"Chuandong Qin, Yu Cao\",\"doi\":\"10.1007/s00607-023-01240-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>At present, large-scale sky surveys have obtained a large volume of stellar spectra. An efficient classification algorithm is of great importance to the practice of astronomical research. In this paper, we propose a novel parallel optimization algorithm based on a lock-free and shared-memory environment to solve the model for astronomical spectra class. Firstly, the SMOTE-TOMEK and RobustScaler are introduced to use for class balancing and data normalization. Secondly, 1-Dimensional Convolutional Neural Networks (1-D CNN) with L2-norm loss function is utilized as a classifier. Finally, LFA-SGD, LFA-Adagrad, LFA-RMSprop and LFA-Adam algorithms are proposed and applied to the classifier solution. The Lock-Free and shared-memory parallel Asynchronous environment (LFA) relies on GPU multiprocessing, allowing the algorithm to fully utilize the multi-core resources of the computer. Due to its sparsity, the convergence speed is significantly faster. The experimental results show that LFA-SGD algorithm and its variants achieved state-of-the-art accuracy and efficiency for astronomical spectra class.</p>\",\"PeriodicalId\":10718,\"journal\":{\"name\":\"Computing\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00607-023-01240-3\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00607-023-01240-3","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
1-D CNNs with lock-free asynchronous adaptive stochastic gradient descent algorithm for classification of astronomical spectra
At present, large-scale sky surveys have obtained a large volume of stellar spectra. An efficient classification algorithm is of great importance to the practice of astronomical research. In this paper, we propose a novel parallel optimization algorithm based on a lock-free and shared-memory environment to solve the model for astronomical spectra class. Firstly, the SMOTE-TOMEK and RobustScaler are introduced to use for class balancing and data normalization. Secondly, 1-Dimensional Convolutional Neural Networks (1-D CNN) with L2-norm loss function is utilized as a classifier. Finally, LFA-SGD, LFA-Adagrad, LFA-RMSprop and LFA-Adam algorithms are proposed and applied to the classifier solution. The Lock-Free and shared-memory parallel Asynchronous environment (LFA) relies on GPU multiprocessing, allowing the algorithm to fully utilize the multi-core resources of the computer. Due to its sparsity, the convergence speed is significantly faster. The experimental results show that LFA-SGD algorithm and its variants achieved state-of-the-art accuracy and efficiency for astronomical spectra class.
期刊介绍:
Computing publishes original papers, short communications and surveys on all fields of computing. The contributions should be written in English and may be of theoretical or applied nature, the essential criteria are computational relevance and systematic foundation of results.